Lemma 52.21.2. In the situation above assume X locally has a dualizing complex. Let T' \subset T \subset Y be subsets stable under specialization. Let d \geq 0 be an integer. Assume
affine locally we have X = \mathop{\mathrm{Spec}}(A_0) and Y = V(I_0) and \text{cd}(A_0, I_0) \leq d,
for y \in T and a nonmaximal prime \mathfrak p \subset \mathcal{O}_{X, y}^\wedge with V(\mathfrak p) \cap V(\mathcal{I}_ y^\wedge ) = \{ \mathfrak m_ y^\wedge \} we have
\text{depth}_{(\mathcal{O}_{X, y})_\mathfrak p} ((\mathcal{F}^\wedge _ y)_\mathfrak p) > 0
for y \in T' and for a prime \mathfrak p \subset \mathcal{O}_{X, y}^\wedge with \mathfrak p \not\in V(\mathcal{I}_ y^\wedge ) and V(\mathfrak p) \cap V(\mathcal{I}_ y^\wedge ) \not= \{ \mathfrak m_ y^\wedge \} we have
\text{depth}_{(\mathcal{O}_{X, y})_\mathfrak p} ((\mathcal{F}^\wedge _ y)_\mathfrak p) \geq 1 \quad \text{or}\quad \text{depth}_{(\mathcal{O}_{X, y})_\mathfrak p} ((\mathcal{F}^\wedge _ y)_\mathfrak p) + \dim (\mathcal{O}_{X, y}^\wedge /\mathfrak p) > 1 + d
for y \in T' and a nonmaximal prime \mathfrak p \subset \mathcal{O}_{X, y}^\wedge with V(\mathfrak p) \cap V(\mathcal{I}_ y^\wedge ) = \{ \mathfrak m_ y^\wedge \} we have
\text{depth}_{(\mathcal{O}_{X, y})_\mathfrak p} ((\mathcal{F}^\wedge _ y)_\mathfrak p) > 1
if y \leadsto y' is an immediate specialization and y' \in T', then y \in T.
Then there exists a canonical map (\mathcal{F}_ n) \to (\mathcal{F}_ n'') of inverse systems of coherent \mathcal{O}_ X-modules with the following properties
for y \in T we have \text{depth}(\mathcal{F}''_{n, y}) \geq 1,
for y' \in T' we have \text{depth}(\mathcal{F}''_{n, y'}) \geq 2,
(\mathcal{F}''_ n) is isomorphic as a pro-system to an object (\mathcal{H}_ n) of \textit{Coh}(X, \mathcal{I}),
the induced morphism (\mathcal{F}_ n) \to (\mathcal{H}_ n) of \textit{Coh}(X, \mathcal{I}) has kernel and cokernel annihilated by a power of \mathcal{I}.
Proof.
As in Lemma 52.21.1 and its proof for every n we let \mathcal{F}_ n \to \mathcal{F}'_ n be the surjection constructed in Local Cohomology, Lemma 51.15.1. Next, we let \mathcal{F}'_ n \to \mathcal{F}''_ n be the injection constructed in Local Cohomology, Lemma 51.15.5 and its proof. The constructions show that we get canonical maps \mathcal{F}''_{n + 1} \to \mathcal{F}''_ n such that we obtain maps
(\mathcal{F}_ n) \longrightarrow (\mathcal{F}_ n') \longrightarrow (\mathcal{F}''_ n)
of inverse systems of coherent \mathcal{O}_ X-modules. Properties (1) and (2) hold by construction.
To prove properties (3) and (4) we may assume that X = \mathop{\mathrm{Spec}}(A_0) is affine and A_0 has a dualizing complex. Let I_0 \subset A_0 be the ideal corresponding to Y. Let A, I be the I-adic completions of A_0, I_0. For later use we observe that A has a dualizing complex (Dualizing Complexes, Lemma 47.22.4). Let M be the finite A-module corresponding to (\mathcal{F}_ n), see Cohomology of Schemes, Lemma 30.23.1. Then \mathcal{F}_ n corresponds to M_ n = M/I^ nM. Recall that \mathcal{F}'_ n corresponds to the quotient M'_ n = M_ n / H^0_ T(M_ n). Also, recall that M' = \mathop{\mathrm{lim}}\nolimits M'_ n is the quotient of M by H^0_ T(M) and that \{ M'_ n\} and \{ M'/I^ nM'\} are isomorphic as pro-systems. Finally, we see that \mathcal{F}''_ n corresponds to an extension
0 \to M'_ n \to M''_ n \to H^1_{T'}(M'_ n) \to 0
see proof of Local Cohomology, Lemma 51.15.5.
Set s = 1. We claim that A, I, T', M', s, d satisfy assumptions (1), (3), (4), (6) of Situation 52.10.1. Namely, (1) and (3) are immediate, (4) is implied by (c), and (6) follows from (d). We omit the details of the verification (c) \Rightarrow (4).
By Theorem 52.10.8 we see that \{ H^1_{T'}(M'/I^ nM')\} is Mittag-Leffler, that H^1_{T'}(M') = \mathop{\mathrm{lim}}\nolimits H^1_{T'}(M'/I^ nM'), and that H^1_{T'}(M') is killed by a power of I. We deduce \{ H^1_{T'}(M'_ n)\} is Mittag-Leffler and H^1_{T'}(M') = \mathop{\mathrm{lim}}\nolimits H^1_{T'}(M'_ n). Thus the limit of the short exact sequences displayed above is the short exact sequence
0 \to M' \to \mathop{\mathrm{lim}}\nolimits M''_ n \to H^1_{T'}(M') \to 0
Set M'' = \mathop{\mathrm{lim}}\nolimits M''_ n. It follows from Local Cohomology, Proposition 51.11.1 that H^1_{T'}(M') and hence M'' are finite A-modules. Thus we find that \mathcal{H}_ n corresponds to the finite A_0-module M''/I^ nM''. To finish the prove we have to show that the canonical map \{ M''/I^ nM''\} \to \{ M''_ n\} is a pro-isomorphism. Since we already know that \{ M'/I^ nM'\} is pro-isomorphic to \{ M'_ n\} the reader verifies (omitted) this is equivalent to asking \{ H^1_{T'}(M')/I^ nH^1_{T'}(M')\} \to \{ H^1_{T'}(M'_ n)\} to be a pro-isomorphism. This is true because \{ H^1_{T'}(M'_ n)\} is Mittag-Leffler, H^1_{T'}(M') = \mathop{\mathrm{lim}}\nolimits H^1_{T'}(M'_ n), and H^1_{T'}(M') is killed by a power of I.
\square
Comments (0)