Lemma 52.21.3. In Situation 52.16.1 assume that $A$ has a dualizing complex. Let $d \geq \text{cd}(A, I)$. Let $(\mathcal{F}_ n)$ be an object of $\textit{Coh}(U, I\mathcal{O}_ U)$. Assume $(\mathcal{F}_ n)$ satisfies the $(2, 2 + d)$-inequalities, see Definition 52.19.1. Then there exists a canonical map $(\mathcal{F}_ n) \to (\mathcal{F}_ n'')$ of inverse systems of coherent $\mathcal{O}_ U$-modules with the following properties

if $\text{depth}(\mathcal{F}''_{n, y}) + \delta ^ Y_ Z(y) \geq 3$ for all $y \in U \cap Y$,

$(\mathcal{F}''_ n)$ is isomorphic as a pro-system to an object $(\mathcal{H}_ n)$ of $\textit{Coh}(U, I\mathcal{O}_ U)$,

the induced morphism $(\mathcal{F}_ n) \to (\mathcal{H}_ n)$ of $\textit{Coh}(U, I\mathcal{O}_ U)$ has kernel and cokernel annihilated by a power of $I$,

the modules $H^0(U, \mathcal{F}''_ n)$ and $H^1(U, \mathcal{F}''_ n)$ are finite $A$-modules for all $n$.

## Comments (0)