The Stacks project

Lemma 21.29.6. In Situation 21.29.1 let $f : X \to Y$ be in $\mathcal{P}$ such that $\{ X \to Y\} $ is a $\tau $-covering. Let $\mathcal{F}'$ be in $\mathcal{A}'_ Y$. If $n \geq 0$ and

\[ \theta \in \text{Equalizer}\left( \xymatrix{ H^{n + 1}_{\tau '}(X, \mathcal{F}') \ar@<1ex>[r] \ar@<-1ex>[r] & H^{n + 1}_{\tau '}(X \times _ Y X, \mathcal{F}') } \right) \]

then there exists a $\tau '$-covering $\{ Y_ i \to Y\} $ such that $\theta $ restricts to zero in $H^{n + 1}_{\tau '}(Y_ i \times _ Y X, \mathcal{F}')$.

Proof. Observe that $X \times _ Y X$ exists by (1). For $Z$ in $\mathcal{C}/Y$ denote $\mathcal{F}'|_ Z$ the restriction of $\mathcal{F}'$ to $\mathcal{C}_{\tau '}/Z$. Recall that $H^{n + 1}_{\tau '}(X, \mathcal{F}') = H^{n + 1}(\mathcal{C}_{\tau '}/X, \mathcal{F}'|_ X)$, see Lemma 21.7.1. The lemma asserts that the image $\overline{\theta } \in H^0(Y, R^{n + 1}f_{\tau ', *}\mathcal{F}'|_ X)$ of $\theta $ is zero. Consider the cartesian diagram

\[ \xymatrix{ X \times _ Y X \ar[d]_{\text{pr}_1} \ar[r]_{\text{pr}_2} & X \ar[d]^ f \\ X \ar[r]^ f & Y } \]

By trivial base change (Lemma 21.21.1) we have

\[ f_{\tau '}^{-1}R^{n + 1}f_{\tau ', *}(\mathcal{F}'|_ X) = R^{n + 1}\text{pr}_{1, \tau ', *}(\mathcal{F}'|_{X \times _ Y X}) \]

If $\text{pr}_1^{-1}\theta = \text{pr}_2^{-1}\theta $, then the section $f_{\tau '}^{-1}\overline{\theta }$ of $f_{\tau '}^{-1}R^{n + 1}f_{\tau ', *}(\mathcal{F}'|_ X)$ is zero, because it is clear that $\text{pr}_1^{-1}\theta $ maps to the zero element in $H^0(X, R^{n + 1}\text{pr}_{1, \tau ', *}(\mathcal{F}'|_{X \times _ Y X}))$. By (2) we have $\mathcal{F}'|_ X$ in $\mathcal{A}'_ X$. Thus $\mathcal{G}' = R^{n + 1}f_{\tau ', *}(\mathcal{F}'|_ X)$ is an object of $\mathcal{A}'_ Y$ by (4). Thus $\mathcal{G}'$ satisfies the sheaf property for $\tau $-coverings by (3). Since $\{ X \to Y\} $ is a $\tau $-covering we conclude that restriction $\mathcal{G}'(Y) \to \mathcal{G}'(X)$ is injective. It follows that $\overline{\theta }$ is zero. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EZD. Beware of the difference between the letter 'O' and the digit '0'.