Processing math: 100%

The Stacks project

Lemma 59.86.1. Consider a cartesian diagram of schemes

\xymatrix{ X \ar[d]_ f & Y \ar[l]^ h \ar[d]^ e \\ S & T \ar[l]_ g }

Let \{ U_ i \to X\} be an étale covering such that U_ i \to S factors as U_ i \to V_ i \to S with V_ i \to S étale and consider the cartesian diagrams

\xymatrix{ U_ i \ar[d]_{f_ i} & U_ i \times _ X Y \ar[l]^{h_ i} \ar[d]^{e_ i} \\ V_ i & V_ i \times _ S T \ar[l]_{g_ i} }

Let \mathcal{F} be a sheaf on T_{\acute{e}tale}. Let K in D(T_{\acute{e}tale}). Set K_ i = K|_{V_ i \times _ S T} and \mathcal{F}_ i = \mathcal{F}|_{V_ i \times _ S T}.

  1. If f_ i^{-1}g_{i, *}\mathcal{F}_ i = h_{i, *}e_ i^{-1}\mathcal{F}_ i for all i, then f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}.

  2. If f_ i^{-1}Rg_{i, *}K_ i = Rh_{i, *}e_ i^{-1}K_ i for all i, then f^{-1}Rg_*K = Rh_*e^{-1}K.

  3. If \mathcal{F} is an abelian sheaf and f_ i^{-1}R^ qg_{i, *}\mathcal{F}_ i = R^ qh_{i, *}e_ i^{-1}\mathcal{F}_ i for all i, then f^{-1}R^ qg_*\mathcal{F} = R^ qh_*e^{-1}\mathcal{F}.

Proof. Proof of (1). First we observe that

(f^{-1}g_*\mathcal{F})|_{U_ i} = f_ i^{-1}(g_*\mathcal{F}|_{V_ i}) = f_ i^{-1}g_{i, *}\mathcal{F}_ i

The first equality because U_ i \to X \to S is equal to U_ i \to V_ i \to S and the second equality because g_*\mathcal{F}|_{V_ i} = g_{i, *}\mathcal{F}_ i by Sites, Lemma 7.28.2. Similarly we have

(h_*e^{-1}\mathcal{F})|_{U_ i} = h_{i, *}(e^{-1}\mathcal{F}|_{U_ i \times _ X Y}) = h_{i, *}e_ i^{-1}\mathcal{F}_ i

Thus if the base change maps f_ i^{-1}g_{i, *}\mathcal{F}_ i \to h_{i, *}e_ i^{-1}\mathcal{F}_ i are isomorphisms for all i, then the base change map f^{-1}g_*\mathcal{F} \to h_*e^{-1}\mathcal{F} restricts to an isomorphism over U_ i for all i and we conclude it is an isomorphism as \{ U_ i \to X\} is an étale covering.

For the other two statements we replace the appeal to Sites, Lemma 7.28.2 by an appeal to Cohomology on Sites, Lemma 21.20.4. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.