Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 59.86.2. Consider a tower of cartesian diagrams of schemes

\[ \xymatrix{ W \ar[d]_ i & Z \ar[l]^ j \ar[d]^ k \\ X \ar[d]_ f & Y \ar[l]^ h \ar[d]^ e \\ S & T \ar[l]_ g } \]

Let $K$ in $D(T_{\acute{e}tale})$. If

\[ f^{-1}Rg_*K \to Rh_*e^{-1}K \quad \text{and}\quad i^{-1}Rh_*e^{-1}K \to Rj_*k^{-1}e^{-1}K \]

are isomorphisms, then $(f \circ i)^{-1}Rg_*K \to Rj_*(e \circ k)^{-1}K$ is an isomorphism. Similarly, if $\mathcal{F}$ is an abelian sheaf on $T_{\acute{e}tale}$ and if

\[ f^{-1}R^ qg_*\mathcal{F} \to R^ qh_*e^{-1}\mathcal{F} \quad \text{and}\quad i^{-1}R^ qh_*e^{-1}\mathcal{F} \to R^ qj_*k^{-1}e^{-1}\mathcal{F} \]

are isomorphisms, then $(f \circ i)^{-1}R^ qg_*\mathcal{F} \to R^ qj_*(e \circ k)^{-1}\mathcal{F}$ is an isomorphism.

Proof. This is formal, provided one checks that the composition of these base change maps is the base change maps for the outer rectangle, see Cohomology on Sites, Remark 21.19.5. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.