The Stacks project

Lemma 59.86.3. Let $I$ be a directed set. Consider an inverse system of cartesian diagrams of schemes

\[ \xymatrix{ X_ i \ar[d]_{f_ i} & Y_ i \ar[l]^{h_ i} \ar[d]^{e_ i} \\ S_ i & T_ i \ar[l]_{g_ i} } \]

with affine transition morphisms and with $g_ i$ quasi-compact and quasi-separated. Set $X = \mathop{\mathrm{lim}}\nolimits X_ i$, $S = \mathop{\mathrm{lim}}\nolimits S_ i$, $T = \mathop{\mathrm{lim}}\nolimits T_ i$ and $Y = \mathop{\mathrm{lim}}\nolimits Y_ i$ to obtain the cartesian diagram

\[ \xymatrix{ X \ar[d]_ f & Y \ar[l]^ h \ar[d]^ e \\ S & T \ar[l]_ g } \]

Let $(\mathcal{F}_ i, \varphi _{i'i})$ be a system of sheaves on $(T_ i)$ as in Definition 59.51.1. Set $\mathcal{F} = \mathop{\mathrm{colim}}\nolimits p_ i^{-1}\mathcal{F}_ i$ on $T$ where $p_ i : T \to T_ i$ is the projection. Then we have the following

  1. If $f_ i^{-1}g_{i, *}\mathcal{F}_ i = h_{i, *}e_ i^{-1}\mathcal{F}_ i$ for all $i$, then $f^{-1}g_*\mathcal{F} = h_*e^{-1}\mathcal{F}$.

  2. If $\mathcal{F}_ i$ is an abelian sheaf for all $i$ and $f_ i^{-1}R^ qg_{i, *}\mathcal{F}_ i = R^ qh_{i, *}e_ i^{-1}\mathcal{F}_ i$ for all $i$, then $f^{-1}R^ qg_*\mathcal{F} = R^ qh_*e^{-1}\mathcal{F}$.

Proof. We prove (2) and we omit the proof of (1). We will use without further mention that pullback of sheaves commutes with colimits as it is a left adjoint. Observe that $h_ i$ is quasi-compact and quasi-separated as a base change of $g_ i$. Denoting $q_ i : Y \to Y_ i$ the projections, observe that $e^{-1}\mathcal{F} = \mathop{\mathrm{colim}}\nolimits e^{-1}p_ i^{-1}\mathcal{F}_ i = \mathop{\mathrm{colim}}\nolimits q_ i^{-1}e_ i^{-1}\mathcal{F}_ i$. By Lemma 59.51.8 this gives

\[ R^ qh_*e^{-1}\mathcal{F} = \mathop{\mathrm{colim}}\nolimits r_ i^{-1}R^ qh_{i, *}e_ i^{-1}\mathcal{F}_ i \]

where $r_ i : X \to X_ i$ is the projection. Similarly, we have

\[ f^{-1}Rg_*\mathcal{F} = f^{-1}\mathop{\mathrm{colim}}\nolimits s_ i^{-1}R^ qg_{i, *}\mathcal{F}_ i = \mathop{\mathrm{colim}}\nolimits r_ i^{-1}f_ i^{-1}R^ qg_{i, *}\mathcal{F}_ i \]

where $s_ i : S \to S_ i$ is the projection. The lemma follows. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EZT. Beware of the difference between the letter 'O' and the digit '0'.