The Stacks project

Lemma 21.29.3. With $\epsilon : (\mathcal{C}_\tau , \mathcal{O}_\tau ) \to (\mathcal{C}_{\tau '}, \mathcal{O}_{\tau '})$ as above. Let

\[ \xymatrix{ E \ar[d] \ar[r] & Y \ar[d] \\ Z \ar[r] & X } \]

be a commutative diagram in the category $\mathcal{C}$ such that

  1. $h_ X^\# = h_ Y^\# \amalg _{h_ E^\# } h_ Z^\# $, and

  2. $h_ E^\# \to h_ Y^\# $ is injective

where ${}^\# $ denotes $\tau $-sheafification. Then for $K' \in D(\mathcal{O}_{\tau '})$ in the essential image of $R\epsilon _*$ the map $c^{K'}_{X, Z, Y, E}$ of Lemma 21.26.1 (using the $\tau '$-topology) is an isomorphism.

Proof. This helper lemma is an almost immediate consequence of Lemma 21.26.3 and we strongly urge the reader skip the proof. Say $K' = R\epsilon _*K$. Choose a K-injective complex of $\mathcal{O}_\tau $-modules $\mathcal{J}^\bullet $ representing $K$. Then $\epsilon _*\mathcal{J}^\bullet $ is a K-injective complex of $\mathcal{O}_{\tau '}$-modules representing $K'$, see Lemma 21.20.10. Next,

\[ 0 \to \mathcal{J}^\bullet (X) \xrightarrow {\alpha } \mathcal{J}^\bullet (Z) \oplus \mathcal{J}^\bullet (Y) \xrightarrow {\beta } \mathcal{J}^\bullet (E) \to 0 \]

is a short exact sequence of complexes of abelian groups, see Lemma 21.26.3 and its proof. Since this is the same as the sequence of complexes of abelian groups which is used to define $c^{K'}_{X, Z, Y, E}$, we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F19. Beware of the difference between the letter 'O' and the digit '0'.