The Stacks project

Lemma 45.11.3. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). If there exists a smooth projective scheme $Y$ over $k$ such that $H^ i(Y)$ is nonzero for some $i < 0$, then there exists an equidimensional smooth projective scheme $X$ over $k$ such that the equivalent conditions of Lemma 45.11.2 fail for $X$.

Proof. By Lemma 45.9.9 we may assume $Y$ is irreducible and a fortiori equidimensional. If $i$ is odd, then after replacing $Y$ by $Y \times Y$ we find an example where $Y$ is equidimensional and $i = -2l$ for some $l > 0$. Set $X = Y \times (\mathbf{P}^1_ k)^ l$. Using axiom (B)(a) we obtain

\[ H^0(X) \supset H^0(Y) \oplus H^ i(Y) \otimes _ F H^2(\mathbf{P}^1_ k)^{\otimes _ F l} \]

with both summands nonzero. Thus it is clear that $H^0(X)$ cannot be isomorphic to $H^0$ of the spectrum of $\Gamma (X, \mathcal{O}_ X) = \Gamma (Y, \mathcal{O}_ Y)$ as this falls into the first summand. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FI1. Beware of the difference between the letter 'O' and the digit '0'.