The Stacks project

20.30 Godement resolution

A reference is [Godement].

Let $(X, \mathcal{O}_ X)$ be a ringed space. Denote $X_{disc}$ the discrete topological space with the same points as $X$. Denote $f : X_{disc} \to X$ the obvious continuous map. Set $\mathcal{O}_{X_{disc}} = f^{-1}\mathcal{O}_ X$. Then $f : (X_{disc}, \mathcal{O}_{X_{disc}}) \to (X, \mathcal{O}_ X)$ is a flat morphism of ringed spaces. We can apply the dual of the material in Simplicial, Section 14.34 to the adjoint pair of functors $f^*, f_*$ on sheaves of modules. Thus we obtain an augmented cosimplicial object

\[ \xymatrix{ \text{id} \ar[r] & f_*f^* \ar@<1ex>[r] \ar@<-1ex>[r] & f_*f^*f_*f^* \ar@<0ex>[l] \ar@<-2ex>[r] \ar@<0ex>[r] \ar@<2ex>[r] & f_*f^*f_*f^*f_*f^* \ar@<1ex>[l] \ar@<-1ex>[l] } \]

in the category of functors from $\textit{Mod}(\mathcal{O}_ X)$ to itself, see Simplicial, Lemma 14.34.2. Moreover, the augmentation

\[ \xymatrix{ f^* \ar[r] & f^*f_*f^* \ar@<1ex>[r] \ar@<-1ex>[r] & f^*f_*f^*f_*f^* \ar@<0ex>[l] \ar@<-2ex>[r] \ar@<0ex>[r] \ar@<2ex>[r] & f^*f_*f^*f_*f^*f_*f^* \ar@<1ex>[l] \ar@<-1ex>[l] } \]

is a homotopy equivalence, see Simplicial, Lemma 14.34.3.

Lemma 20.30.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. For every sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ there is a resolution

\[ 0 \to \mathcal{F} \to f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \]

functorial in $\mathcal{F}$ such that each term $f_*f^* \ldots f_*f^*\mathcal{F}$ is a flasque $\mathcal{O}_ X$-module and such that for all $x \in X$ the map

\[ \mathcal{F}_ x[0] \to \Big( (f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F})_ x \to \ldots \Big) \]

is a homotopy equivalence in the category of complexes of $\mathcal{O}_{X, x}$-modules.

Proof. The complex $f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots $ is the complex associated to the cosimplicial object with terms $f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots $ described above, see Simplicial, Section 14.25. The augmentation gives rise to the map $\mathcal{F} \to f_*f^*\mathcal{F}$ as indicated. For any abelian sheaf $\mathcal{H}$ on $X_{disc}$ the pushforward $f_*\mathcal{H}$ is flasque because $X_{disc}$ is a discrete space and the pushforward of a flasque sheaf is flasque. Hence the terms of the complex are flasque $\mathcal{O}_ X$-modules.

If $x \in X_{disc} = X$ is a point, then $(f^*\mathcal{G})_ x = \mathcal{G}_ x$ for any $\mathcal{O}_ X$-module $\mathcal{G}$. Hence $f^*$ is an exact functor and a complex of $\mathcal{O}_ X$-modules $\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ is exact if and only if $f^*\mathcal{G}_1 \to f^*\mathcal{G}_2 \to f^*\mathcal{G}_3$ is exact (see Modules, Lemma 17.3.1). The result mentioned in the introduction to this section proves the pullback by $f^*$ gives a homotopy equivalence from the constant cosimplicial object $f^*\mathcal{F}$ to the cosimplicial object with terms $f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots $. By Simplicial, Lemma 14.28.7 we obtain that

\[ f^*\mathcal{F}[0] \to \Big( f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \Big) \]

is a homotopy equivalence. This immediately implies the two remaining statements of the lemma. $\square$

Lemma 20.30.2. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $\mathcal{F}^\bullet $ be a bounded below complex of $\mathcal{O}_ X$-modules. There exists a quasi-isomorphism $\mathcal{F}^\bullet \to \mathcal{G}^\bullet $ where $\mathcal{G}^\bullet $ be a bounded below complex of flasque $\mathcal{O}_ X$-modules and for all $x \in X$ the map $\mathcal{F}^\bullet _ x \to \mathcal{G}^\bullet _ x$ is a homotopy equivalence in the category of complexes of $\mathcal{O}_{X, x}$-modules.

Proof. Let $\mathcal{A}$ be the category of complexes of $\mathcal{O}_ X$-modules and let $\mathcal{B}$ be the category of complexes of $\mathcal{O}_ X$-modules. Then we can apply the discussion above to the adjoint functors $f^*$ and $f_*$ between $\mathcal{A}$ and $\mathcal{B}$. Arguing exactly as in the proof of Lemma 20.30.1 we get a resolution

\[ 0 \to \mathcal{F}^\bullet \to f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet \to \ldots \]

in the abelian category $\mathcal{A}$ such that each term of each $f_*f^*\ldots f_*f^*\mathcal{F}^\bullet $ is a flasque $\mathcal{O}_ X$-module and such that for all $x \in X$ the map

\[ \mathcal{F}^\bullet _ x[0] \to \Big( (f_*f^*\mathcal{F}^\bullet )_ x \to (f_*f^*f_*f^*\mathcal{F}^\bullet )_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet )_ x \to \ldots \Big) \]

is a homotopy equivalence in the category of complexes of complexes of $\mathcal{O}_{X, x}$-modules. Since a complex of complexes is the same thing as a double complex, we can consider the induced map

\[ \mathcal{F}^\bullet \to \mathcal{G}^\bullet = \text{Tot}( f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet \to \ldots ) \]

Since the complex $\mathcal{F}^\bullet $ is bounded below, the same is true for $\mathcal{G}^\bullet $ and in fact each term of $\mathcal{G}^\bullet $ is a finite direct sum of terms of the complexes $f_*f^*\ldots f_*f^*\mathcal{F}^\bullet $ and hence is flasque. The final assertion of the lemma now follows from Homology, Lemma 12.25.5. Since this in particular shows that $\mathcal{F}^\bullet \to \mathcal{G}^\bullet $ is a quasi-isomorphism, the proof is complete. $\square$


Comments (2)

Comment #6052 by Hans Schoutens on

In 2nd line of the statement of Lemma 0FKT, ...where F^\bullet be a bounded... should be ...where G^\bullet is a bounded...


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FKR. Beware of the difference between the letter 'O' and the digit '0'.