20.30 Godement resolution
A reference is [Godement].
Let (X, \mathcal{O}_ X) be a ringed space. Denote X_{disc} the discrete topological space with the same points as X. Denote f : X_{disc} \to X the obvious continuous map. Set \mathcal{O}_{X_{disc}} = f^{-1}\mathcal{O}_ X. Then f : (X_{disc}, \mathcal{O}_{X_{disc}}) \to (X, \mathcal{O}_ X) is a flat morphism of ringed spaces. We can apply the dual of the material in Simplicial, Section 14.34 to the adjoint pair of functors f^*, f_* on sheaves of modules. Thus we obtain an augmented cosimplicial object
\xymatrix{ \text{id} \ar[r] & f_*f^* \ar@<1ex>[r] \ar@<-1ex>[r] & f_*f^*f_*f^* \ar@<0ex>[l] \ar@<-2ex>[r] \ar@<0ex>[r] \ar@<2ex>[r] & f_*f^*f_*f^*f_*f^* \ar@<1ex>[l] \ar@<-1ex>[l] }
in the category of functors from \textit{Mod}(\mathcal{O}_ X) to itself, see Simplicial, Lemma 14.34.2. Moreover, the augmentation
\xymatrix{ f^* \ar[r] & f^*f_*f^* \ar@<1ex>[r] \ar@<-1ex>[r] & f^*f_*f^*f_*f^* \ar@<0ex>[l] \ar@<-2ex>[r] \ar@<0ex>[r] \ar@<2ex>[r] & f^*f_*f^*f_*f^*f_*f^* \ar@<1ex>[l] \ar@<-1ex>[l] }
is a homotopy equivalence, see Simplicial, Lemma 14.34.3.
Lemma 20.30.1. Let (X, \mathcal{O}_ X) be a ringed space. For every sheaf of \mathcal{O}_ X-modules \mathcal{F} there is a resolution
0 \to \mathcal{F} \to f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots
functorial in \mathcal{F} such that each term f_*f^* \ldots f_*f^*\mathcal{F} is a flasque \mathcal{O}_ X-module and such that for all x \in X the map
\mathcal{F}_ x[0] \to \Big( (f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F})_ x \to \ldots \Big)
is a homotopy equivalence in the category of complexes of \mathcal{O}_{X, x}-modules.
Proof.
The complex f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots is the complex associated to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots described above, see Simplicial, Section 14.25. The augmentation gives rise to the map \mathcal{F} \to f_*f^*\mathcal{F} as indicated. For any abelian sheaf \mathcal{H} on X_{disc} the pushforward f_*\mathcal{H} is flasque because X_{disc} is a discrete space and the pushforward of a flasque sheaf is flasque. Hence the terms of the complex are flasque \mathcal{O}_ X-modules.
If x \in X_{disc} = X is a point, then (f^*\mathcal{G})_ x = \mathcal{G}_ x for any \mathcal{O}_ X-module \mathcal{G}. Hence f^* is an exact functor and a complex of \mathcal{O}_ X-modules \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 is exact if and only if f^*\mathcal{G}_1 \to f^*\mathcal{G}_2 \to f^*\mathcal{G}_3 is exact (see Modules, Lemma 17.3.1). The result mentioned in the introduction to this section proves the pullback by f^* gives a homotopy equivalence from the constant cosimplicial object f^*\mathcal{F} to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots . By Simplicial, Lemma 14.28.7 we obtain that
f^*\mathcal{F}[0] \to \Big( f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \Big)
is a homotopy equivalence. This immediately implies the two remaining statements of the lemma.
\square
Lemma 20.30.2. Let (X, \mathcal{O}_ X) be a ringed space. Let \mathcal{F}^\bullet be a bounded below complex of \mathcal{O}_ X-modules. There exists a quasi-isomorphism \mathcal{F}^\bullet \to \mathcal{G}^\bullet where \mathcal{G}^\bullet be a bounded below complex of flasque \mathcal{O}_ X-modules and for all x \in X the map \mathcal{F}^\bullet _ x \to \mathcal{G}^\bullet _ x is a homotopy equivalence in the category of complexes of \mathcal{O}_{X, x}-modules.
Proof.
Let \mathcal{A} be the category of complexes of \mathcal{O}_ X-modules and let \mathcal{B} be the category of complexes of \mathcal{O}_ X-modules. Then we can apply the discussion above to the adjoint functors f^* and f_* between \mathcal{A} and \mathcal{B}. Arguing exactly as in the proof of Lemma 20.30.1 we get a resolution
0 \to \mathcal{F}^\bullet \to f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet \to \ldots
in the abelian category \mathcal{A} such that each term of each f_*f^*\ldots f_*f^*\mathcal{F}^\bullet is a flasque \mathcal{O}_ X-module and such that for all x \in X the map
\mathcal{F}^\bullet _ x[0] \to \Big( (f_*f^*\mathcal{F}^\bullet )_ x \to (f_*f^*f_*f^*\mathcal{F}^\bullet )_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet )_ x \to \ldots \Big)
is a homotopy equivalence in the category of complexes of complexes of \mathcal{O}_{X, x}-modules. Since a complex of complexes is the same thing as a double complex, we can consider the induced map
\mathcal{F}^\bullet \to \mathcal{G}^\bullet = \text{Tot}( f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*\mathcal{F}^\bullet \to f_*f^*f_*f^*f_*f^*\mathcal{F}^\bullet \to \ldots )
Since the complex \mathcal{F}^\bullet is bounded below, the same is true for \mathcal{G}^\bullet and in fact each term of \mathcal{G}^\bullet is a finite direct sum of terms of the complexes f_*f^*\ldots f_*f^*\mathcal{F}^\bullet and hence is flasque. The final assertion of the lemma now follows from Homology, Lemma 12.25.5. Since this in particular shows that \mathcal{F}^\bullet \to \mathcal{G}^\bullet is a quasi-isomorphism, the proof is complete.
\square
Comments (2)
Comment #6052 by Hans Schoutens on
Comment #6188 by Johan on