The Stacks project

Lemma 20.30.1. Let $(X, \mathcal{O}_ X)$ be a ringed space. For every sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ there is a resolution

\[ 0 \to \mathcal{F} \to f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \]

functorial in $\mathcal{F}$ such that each term $f_*f^* \ldots f_*f^*\mathcal{F}$ is a flasque $\mathcal{O}_ X$-module and such that for all $x \in X$ the map

\[ \mathcal{F}_ x[0] \to \Big( (f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F})_ x \to \ldots \Big) \]

is a homotopy equivalence in the category of complexes of $\mathcal{O}_{X, x}$-modules.

Proof. The complex $f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots $ is the complex associated to the cosimplicial object with terms $f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots $ described above, see Simplicial, Section 14.25. The augmentation gives rise to the map $\mathcal{F} \to f_*f^*\mathcal{F}$ as indicated. For any abelian sheaf $\mathcal{H}$ on $X_{disc}$ the pushforward $f_*\mathcal{H}$ is flasque because $X_{disc}$ is a discrete space and the pushforward of a flasque sheaf is flasque. Hence the terms of the complex are flasque $\mathcal{O}_ X$-modules.

If $x \in X_{disc} = X$ is a point, then $(f^*\mathcal{G})_ x = \mathcal{G}_ x$ for any $\mathcal{O}_ X$-module $\mathcal{G}$. Hence $f^*$ is an exact functor and a complex of $\mathcal{O}_ X$-modules $\mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3$ is exact if and only if $f^*\mathcal{G}_1 \to f^*\mathcal{G}_2 \to f^*\mathcal{G}_3$ is exact (see Modules, Lemma 17.3.1). The result mentioned in the introduction to this section proves the pullback by $f^*$ gives a homotopy equivalence from the constant cosimplicial object $f^*\mathcal{F}$ to the cosimplicial object with terms $f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots $. By Simplicial, Lemma 14.28.7 we obtain that

\[ f^*\mathcal{F}[0] \to \Big( f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \Big) \]

is a homotopy equivalence. This immediately implies the two remaining statements of the lemma. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 20.30: Godement resolution

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FKS. Beware of the difference between the letter 'O' and the digit '0'.