Processing math: 100%

The Stacks project

Lemma 20.30.1. Let (X, \mathcal{O}_ X) be a ringed space. For every sheaf of \mathcal{O}_ X-modules \mathcal{F} there is a resolution

0 \to \mathcal{F} \to f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots

functorial in \mathcal{F} such that each term f_*f^* \ldots f_*f^*\mathcal{F} is a flasque \mathcal{O}_ X-module and such that for all x \in X the map

\mathcal{F}_ x[0] \to \Big( (f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F})_ x \to \ldots \Big)

is a homotopy equivalence in the category of complexes of \mathcal{O}_{X, x}-modules.

Proof. The complex f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots is the complex associated to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots described above, see Simplicial, Section 14.25. The augmentation gives rise to the map \mathcal{F} \to f_*f^*\mathcal{F} as indicated. For any abelian sheaf \mathcal{H} on X_{disc} the pushforward f_*\mathcal{H} is flasque because X_{disc} is a discrete space and the pushforward of a flasque sheaf is flasque. Hence the terms of the complex are flasque \mathcal{O}_ X-modules.

If x \in X_{disc} = X is a point, then (f^*\mathcal{G})_ x = \mathcal{G}_ x for any \mathcal{O}_ X-module \mathcal{G}. Hence f^* is an exact functor and a complex of \mathcal{O}_ X-modules \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 is exact if and only if f^*\mathcal{G}_1 \to f^*\mathcal{G}_2 \to f^*\mathcal{G}_3 is exact (see Modules, Lemma 17.3.1). The result mentioned in the introduction to this section proves the pullback by f^* gives a homotopy equivalence from the constant cosimplicial object f^*\mathcal{F} to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots . By Simplicial, Lemma 14.28.7 we obtain that

f^*\mathcal{F}[0] \to \Big( f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \Big)

is a homotopy equivalence. This immediately implies the two remaining statements of the lemma. \square


Comments (0)

There are also:

  • 2 comment(s) on Section 20.30: Godement resolution

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.