Lemma 20.30.1. Let (X, \mathcal{O}_ X) be a ringed space. For every sheaf of \mathcal{O}_ X-modules \mathcal{F} there is a resolution
0 \to \mathcal{F} \to f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots
functorial in \mathcal{F} such that each term f_*f^* \ldots f_*f^*\mathcal{F} is a flasque \mathcal{O}_ X-module and such that for all x \in X the map
\mathcal{F}_ x[0] \to \Big( (f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*\mathcal{F})_ x \to (f_*f^*f_*f^*f_*f^*\mathcal{F})_ x \to \ldots \Big)
is a homotopy equivalence in the category of complexes of \mathcal{O}_{X, x}-modules.
Proof.
The complex f_*f^*\mathcal{F} \to f_*f^*f_*f^*\mathcal{F} \to f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots is the complex associated to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots described above, see Simplicial, Section 14.25. The augmentation gives rise to the map \mathcal{F} \to f_*f^*\mathcal{F} as indicated. For any abelian sheaf \mathcal{H} on X_{disc} the pushforward f_*\mathcal{H} is flasque because X_{disc} is a discrete space and the pushforward of a flasque sheaf is flasque. Hence the terms of the complex are flasque \mathcal{O}_ X-modules.
If x \in X_{disc} = X is a point, then (f^*\mathcal{G})_ x = \mathcal{G}_ x for any \mathcal{O}_ X-module \mathcal{G}. Hence f^* is an exact functor and a complex of \mathcal{O}_ X-modules \mathcal{G}_1 \to \mathcal{G}_2 \to \mathcal{G}_3 is exact if and only if f^*\mathcal{G}_1 \to f^*\mathcal{G}_2 \to f^*\mathcal{G}_3 is exact (see Modules, Lemma 17.3.1). The result mentioned in the introduction to this section proves the pullback by f^* gives a homotopy equivalence from the constant cosimplicial object f^*\mathcal{F} to the cosimplicial object with terms f_*f^*\mathcal{F}, f_*f^*f_*f^*\mathcal{F}, f_*f^*f_*f^*f_*f^*\mathcal{F}, \ldots . By Simplicial, Lemma 14.28.7 we obtain that
f^*\mathcal{F}[0] \to \Big( f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*\mathcal{F} \to f^*f_*f^*f_*f^*f_*f^*\mathcal{F} \to \ldots \Big)
is a homotopy equivalence. This immediately implies the two remaining statements of the lemma.
\square
Comments (0)
There are also: