Example 21.48.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{F}^\bullet be a complex of \mathcal{O}-modules such that for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there exists a covering \{ U_ i \to U\} such that \mathcal{F}^\bullet |_{U_ i} is strictly perfect. Consider the complex
as in Section 21.34. Let
be \eta = \sum \eta _ n and \epsilon = \sum \epsilon _ n where \eta _ n : \mathcal{O} \to \mathcal{F}^ n \otimes _\mathcal {O} \mathcal{G}^{-n} and \epsilon _ n : \mathcal{G}^{-n} \otimes _\mathcal {O} \mathcal{F}^ n \to \mathcal{O} are as in Modules on Sites, Example 18.29.1. Then \mathcal{G}^\bullet , \eta , \epsilon is a left dual for \mathcal{F}^\bullet as in Categories, Definition 4.43.5. We omit the verification that (1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_{\mathcal{F}^\bullet } and (\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathcal{G}^\bullet }. Please compare with More on Algebra, Lemma 15.72.2.
Comments (0)