Processing math: 100%

The Stacks project

Example 21.48.2. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let \mathcal{F}^\bullet be a complex of \mathcal{O}-modules such that for every U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) there exists a covering \{ U_ i \to U\} such that \mathcal{F}^\bullet |_{U_ i} is strictly perfect. Consider the complex

\mathcal{G}^\bullet = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{F}^\bullet , \mathcal{O})

as in Section 21.34. Let

\eta : \mathcal{O} \to \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{G}^\bullet ) \quad \text{and}\quad \epsilon : \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{F}^\bullet ) \to \mathcal{O}

be \eta = \sum \eta _ n and \epsilon = \sum \epsilon _ n where \eta _ n : \mathcal{O} \to \mathcal{F}^ n \otimes _\mathcal {O} \mathcal{G}^{-n} and \epsilon _ n : \mathcal{G}^{-n} \otimes _\mathcal {O} \mathcal{F}^ n \to \mathcal{O} are as in Modules on Sites, Example 18.29.1. Then \mathcal{G}^\bullet , \eta , \epsilon is a left dual for \mathcal{F}^\bullet as in Categories, Definition 4.43.5. We omit the verification that (1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_{\mathcal{F}^\bullet } and (\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathcal{G}^\bullet }. Please compare with More on Algebra, Lemma 15.72.2.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.