Example 21.48.2. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{F}^\bullet$ be a complex of $\mathcal{O}$-modules such that for every $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ there exists a covering $\{ U_ i \to U\}$ such that $\mathcal{F}^\bullet |_{U_ i}$ is strictly perfect. Consider the complex

$\mathcal{G}^\bullet = \mathop{\mathcal{H}\! \mathit{om}}\nolimits ^\bullet (\mathcal{F}^\bullet , \mathcal{O})$

as in Section 21.34. Let

$\eta : \mathcal{O} \to \text{Tot}(\mathcal{F}^\bullet \otimes _\mathcal {O} \mathcal{G}^\bullet ) \quad \text{and}\quad \epsilon : \text{Tot}(\mathcal{G}^\bullet \otimes _\mathcal {O} \mathcal{F}^\bullet ) \to \mathcal{O}$

be $\eta = \sum \eta _ n$ and $\epsilon = \sum \epsilon _ n$ where $\eta _ n : \mathcal{O} \to \mathcal{F}^ n \otimes _\mathcal {O} \mathcal{G}^{-n}$ and $\epsilon _ n : \mathcal{G}^{-n} \otimes _\mathcal {O} \mathcal{F}^ n \to \mathcal{O}$ are as in Modules on Sites, Example 18.29.1. Then $\mathcal{G}^\bullet , \eta , \epsilon$ is a left dual for $\mathcal{F}^\bullet$ as in Categories, Definition 4.43.5. We omit the verification that $(1 \otimes \epsilon ) \circ (\eta \otimes 1) = \text{id}_{\mathcal{F}^\bullet }$ and $(\epsilon \otimes 1) \circ (1 \otimes \eta ) = \text{id}_{\mathcal{G}^\bullet }$. Please compare with More on Algebra, Lemma 15.72.2.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).