The Stacks project

Proposition 50.17.4. With notation as in Lemma 50.17.1 the map $\Omega ^\bullet _{X/S} \to Rb_*\Omega ^\bullet _{X'/S}$ has a splitting in $D(X, (X \to S)^{-1}\mathcal{O}_ S)$.

Proof. Consider the triangle constructed in Lemma 50.17.3. We claim that the map

\[ Rb_*(\Omega ^\bullet _{X'/S}) \oplus i_*\Omega ^\bullet _{Z/S} \to i_*Rp_*(\Omega ^\bullet _{E/S}) \]

has a splitting whose image contains the summand $i_*\Omega ^\bullet _{Z/S}$. By Derived Categories, Lemma 13.4.11 this will show that the first arrow of the triangle has a splitting which vanishes on the summand $i_*\Omega ^\bullet _{Z/S}$ which proves the lemma. We will prove the claim by decomposing $Rp_*\Omega ^\bullet _{E/S}$ into a direct sum where the first piece corresponds to $\Omega ^\bullet _{Z/S}$ and the second piece can be lifted through $Rb_*\Omega ^\bullet _{X'/S}$.

Proof of the claim. We may decompose $X$ into open and closed subschemes having fixed relative dimension to $S$, see Morphisms, Lemma 29.34.12. Since the derived category $D(X, f^{-1}\mathcal{O})_ S)$ correspondingly decomposes as a product of categories, we may assume $X$ has fixed relative dimension $N$ over $S$. We may decompose $Z = \coprod Z_ m$ into open and closed subschemes of relative dimension $m \geq 0$ over $S$. The restriction $i_ m : Z_ m \to X$ of $i$ to $Z_ m$ is a regular immersion of codimension $N - m$, see Divisors, Lemma 31.22.11. Let $E = \coprod E_ m$ be the corresponding decomposition, i.e., we set $E_ m = p^{-1}(Z_ m)$. If $p_ m : E_ m \to Z_ m$ denotes the restriction of $p$ to $E_ m$, then we have a canonical isomorphism

\[ \tilde\xi _ m : \bigoplus \nolimits _{t = 0, \ldots , N - m - 1} \Omega ^\bullet _{Z_ m/S}[-2t] \longrightarrow Rp_{m, *}\Omega ^\bullet _{E_ m/S} \]

in $D(Z_ m, (Z_ m \to S)^{-1}\mathcal{O}_ S)$ where in degree $0$ we have the canonical map $\Omega ^\bullet _{Z_ m/S} \to Rp_{m, *}\Omega ^\bullet _{E_ m/S}$. See Remark 50.14.2. Thus we have an isomorphism

\[ \tilde\xi : \bigoplus \nolimits _ m \bigoplus \nolimits _{t = 0, \ldots , N - m - 1} \Omega ^\bullet _{Z_ m/S}[-2t] \longrightarrow Rp_*(\Omega ^\bullet _{E/S}) \]

in $D(Z, (Z \to S)^{-1}\mathcal{O}_ S)$ whose restriction to the summand $\Omega ^\bullet _{Z/S} = \bigoplus \Omega ^\bullet _{Z_ m/S}$ of the source is the canonical map $\Omega ^\bullet _{Z/S} \to Rp_*(\Omega ^\bullet _{E/S})$. Consider the subcomplexes $M_ m$ and $K_ m$ of the complex $\bigoplus \nolimits _{t = 0, \ldots , N - m - 1} \Omega ^\bullet _{Z_ m/S}[-2t]$ introduced in Remark 50.14.2. We set

\[ M = \bigoplus M_ m \quad \text{and}\quad K = \bigoplus K_ m \]

We have $M = K[-2]$ and by construction the map

\[ c_{E/Z} \oplus \tilde\xi |_ M : \Omega ^\bullet _{Z/S} \oplus M \longrightarrow Rp_*(\Omega ^\bullet _{E/S}) \]

is an isomorphism (see remark referenced above).

Consider the map

\[ \delta : \Omega ^\bullet _{E/S}[-2] \longrightarrow \Omega ^\bullet _{X'/S} \]

in $D(X', (X' \to S)^{-1}\mathcal{O}_ S)$ of Lemma 50.15.5 with the property that the composition

\[ \Omega ^\bullet _{E/S}[-2] \longrightarrow \Omega ^\bullet _{X'/S} \longrightarrow \Omega ^\bullet _{E/S} \]

is the map $\theta '$ of Remark 50.4.3 for $c_1^{dR}(\mathcal{O}_{X'}(-E))|_ E) = c_1^{dR}(\mathcal{O}_ E(1))$. The final assertion of Remark 50.14.2 tells us that the diagram

\[ \xymatrix{ K[-2] \ar[d]_{(\tilde\xi |_ K)[-2]} \ar[r]_{\text{id}} & M \ar[d]^{\tilde x|_ M} \\ Rp_*\Omega ^\bullet _{E/S}[-2] \ar[r]^-{Rp_*\theta '} & Rp_*\Omega ^\bullet _{E/S} } \]

commutes. Thus we see that we can obtain the desired splitting of the claim as the map

\begin{align*} Rp_*(\Omega ^\bullet _{E/S}) & \xrightarrow {(c_{E/Z} \oplus \tilde\xi |_ M)^{-1}} \Omega ^\bullet _{Z/S} \oplus M \\ & \xrightarrow {\text{id} \oplus \text{id}^{-1}} \Omega ^\bullet _{Z/S} \oplus K[-2] \\ & \xrightarrow {\text{id} \oplus (\tilde\xi |_ K)[-2]} \Omega ^\bullet _{Z/S} \oplus Rp_*\Omega ^\bullet _{E/S}[-2] \\ & \xrightarrow {\text{id} \oplus Rb_*\delta } \Omega ^\bullet _{Z/S} \oplus Rb_*\Omega ^\bullet _{X'/S} \end{align*}

The relationship between $\theta '$ and $\delta $ stated above together with the commutative diagram involving $\theta '$, $\tilde\xi |_ K$, and $\tilde\xi |_ M$ above are exactly what's needed to show that this is a section to the canonical map $\Omega ^\bullet _{Z/S} \oplus Rb_*(\Omega ^\bullet _{X'/S}) \to Rp_*(\Omega ^\bullet _{E/S})$ and the proof of the claim is complete. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FUW. Beware of the difference between the letter 'O' and the digit '0'.