Lemma 57.16.1. Let (R, \mathfrak m, \kappa ) \to (A, \mathfrak n, \lambda ) be a flat local ring homorphism of local rings which is essentially of finite presentation. Let \overline{f}_1, \ldots , \overline{f}_ r \in \mathfrak n/\mathfrak m A \subset A/\mathfrak m A be a regular sequence. Let K \in D(A). Assume
K is perfect,
K \otimes _ A^\mathbf {L} A/\mathfrak m A is isomorphic in D(A/\mathfrak m A) to the Koszul complex on \overline{f}_1, \ldots , \overline{f}_ r.
Then K is isomorphic in D(A) to a Koszul complex on a regular sequence f_1, \ldots , f_ r \in A lifting the given elements \overline{f}_1, \ldots , \overline{f}_ r. Moreover, A/(f_1, \ldots , f_ r) is flat over R.
Proof.
Let us use chain complexes in the proof of this lemma. The Koszul complex K_\bullet (\overline{f}_1, \ldots , \overline{f}_ r) is defined in More on Algebra, Definition 15.28.2. By More on Algebra, Lemma 15.75.5 we can represent K by a complex
K_\bullet : A \to A^{\oplus r} \to \ldots \to A^{\oplus r} \to A
whose tensor product with A/\mathfrak mA is equal (!) to K_\bullet (\overline{f}_1, \ldots , \overline{f}_ r). Denote f_1, \ldots , f_ r \in A the components of the arrow A^{\oplus r} \to A. These f_ i are lifts of the \overline{f}_ i. By Algebra, Lemma 10.128.6 f_1, \ldots , f_ r form a regular sequence in A and A/(f_1, \ldots , f_ r) is flat over R. Let J = (f_1, \ldots , f_ r) \subset A. Consider the diagram
\xymatrix{ K_\bullet \ar[rd] \ar@{..>}[rr]_{\varphi _\bullet } & & K_\bullet (f_1, \ldots , f_ r) \ar[ld] \\ & A/J }
Since f_1, \ldots , f_ r is a regular sequence the south-west arrow is a quasi-isomorphism (see More on Algebra, Lemma 15.30.2). Hence we can find the dotted arrow making the diagram commute for example by Algebra, Lemma 10.71.4. Reducing modulo \mathfrak m we obtain a commutative diagram
\xymatrix{ K_\bullet (\overline{f}_1, \ldots , \overline{f}_ r) \ar[rd] \ar[rr]_{\overline{\varphi }_\bullet } & & K_\bullet (\overline{f}_1, \ldots , \overline{f}_ r) \ar[ld] \\ & (A/\mathfrak m A)/(\overline{f}_1, \ldots , \overline{f}_ r) }
by our choice of K_\bullet . Thus \overline{\varphi } is an isomorphism in the derived category D(A/\mathfrak m A). It follows that \overline{\varphi } \otimes _{A/\mathfrak m A}^\mathbf {L} \lambda is an isomorphism. Since \overline{f}_ i \in \mathfrak n / \mathfrak m A we see that
\text{Tor}_ i^{A/\mathfrak m A}( K_\bullet (\overline{f}_1, \ldots , \overline{f}_ r), \lambda ) = K_ i(\overline{f}_1, \ldots , \overline{f}_ r) \otimes _{A/\mathfrak m A} \lambda
Hence \varphi _ i \bmod \mathfrak n is invertible. Since A is local this means that \varphi _ i is an isomorphism and the proof is complete.
\square
Comments (3)
Comment #5408 by Shogōki on
Comment #5409 by Shogōki on
Comment #5639 by Johan on