Lemma 57.16.2. Let R \to S be a finite type flat ring map of Noetherian rings. Let \mathfrak q \subset S be a prime ideal lying over \mathfrak p \subset R. Let K \in D(S) be perfect. Let f_1, \ldots , f_ r \in \mathfrak q S_\mathfrak q be a regular sequence such that S_\mathfrak q/(f_1, \ldots , f_ r) is flat over R and such that K \otimes _ S^\mathbf {L} S_\mathfrak q is isomorphic to the Koszul complex on f_1, \ldots , f_ r. Then there exists a g \in S, g \not\in \mathfrak q such that
f_1, \ldots , f_ r are the images of f'_1, \ldots , f'_ r \in S_ g,
f'_1, \ldots , f'_ r form a regular sequence in S_ g,
S_ g/(f'_1, \ldots , f'_ r) is flat over R,
K \otimes _ S^\mathbf {L} S_ g is isomorphic to the Koszul complex on f_1, \ldots , f_ r.
Comments (0)