The Stacks project

Lemma 57.16.3. Let $S$ be a Noetherian scheme. Let $s \in S$. Let $p : X \to Y$ be a morphism of schemes over $S$. Assume

  1. $Y \to S$ and $X \to S$ proper,

  2. $X$ is flat over $S$,

  3. $X_ s \to Y_ s$ an isomorphism.

Then there exists an open neighbourhood $U \subset S$ of $s$ such that the base change $X_ U \to Y_ U$ is an isomorphism.

Proof. The morphism $p$ is proper by Morphisms, Lemma 29.41.6. By Cohomology of Schemes, Lemma 30.21.2 there is an open $Y_ s \subset V \subset Y$ such that $p|_{p^{-1}(V)} : p^{-1}(V) \to V$ is finite. By More on Morphisms, Theorem 37.16.1 there is an open $X_ s \subset U \subset X$ such that $p|_ U : U \to Y$ is flat. After removing the images of $X \setminus U$ and $Y \setminus V$ (which are closed subsets not containing $s$) we may assume $p$ is flat and finite. Then $p$ is open (Morphisms, Lemma 29.25.10) and $Y_ s \subset p(X) \subset Y$ hence after shrinking $S$ we may assume $p$ is surjective. As $p_ s : X_ s \to Y_ s$ is an isomorphism, the map

\[ p^\sharp : \mathcal{O}_ Y \longrightarrow p_*\mathcal{O}_ X \]

of coherent $\mathcal{O}_ Y$-modules ($p$ is finite) becomes an isomorphism after pullback by $i : Y_ s \to Y$ (by Cohomology of Schemes, Lemma 30.5.1 for example). By Nakayama's lemma, this implies that $\mathcal{O}_{Y, y} \to (p_*\mathcal{O}_ X)_ y$ is surjective for all $y \in Y_ s$. Hence there is an open $Y_ s \subset V \subset Y$ such that $p^\sharp |_ V$ is surjective (Modules, Lemma 17.9.4). Hence after shrinking $S$ once more we may assume $p^\sharp $ is surjective which means that $p$ is a closed immersion (as $p$ is already finite). Thus now $p$ is a surjective flat closed immersion of Noetherian schemes and hence an isomorphism, see Morphisms, Section 29.26. $\square$

Comments (2)

Comment #5410 by Shogōki on

In sentences concerning properties of , you meant "" when you say "": "... becomes an isomorphism after pullback by "; "... is surjective for all $y \in \emph{Y_s}."

Also from the proof I think the statement of this lemma should be that one finds this open neighborhood U in S, such that the base change of p to U becomes an \emph{isomorphism}.

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G0Q. Beware of the difference between the letter 'O' and the digit '0'.