The Stacks project

Lemma 57.16.4. Let $k$ be a field. Let $S$ be a finite type scheme over $k$ with $k$-rational point $s$. Let $Y \to S$ be a smooth proper morphism. Let $X = Y_ s \times S \to S$ be the constant family with fibre $Y_ s$. Let $K$ be the Fourier-Mukai kernel of a relative equivalence from $X$ to $Y$ over $S$. Assume the restriction

\[ L(Y_ s \times _ S Y_ s \to X \times _ S Y)^*K \cong \Delta _{Y_ s/k, *} \mathcal{O}_{Y_ s} \]

in $D(\mathcal{O}_{Y_ s \times Y_ s})$. Then there is an open neighbourhood $s \in U \subset S$ such that $Y|_ U$ is isomorphic to $Y_ s \times U$ over $U$.

Proof. Denote $i : Y_ s \times Y_ s = X_ s \times Y_ s \to X \times _ S Y$ the natural closed immersion. (We will write $Y_ s$ and not $X_ s$ for the fibre of $X$ over $s$ from now on.) Let $z \in Y_ s \times Y_ s = (X \times _ S Y)_ s \subset X \times _ S Y$ be a closed point. As indicated we think of $z$ both as a closed point of $Y_ s \times Y_ s$ as well as a closed point of $X \times _ S Y$.

Case I: $z \not\in \Delta _{Y_ s/k}(Y_ s)$. Denote $\mathcal{O}_ z$ the coherent $\mathcal{O}_{Y_ s \times Y_ s}$-module supported at $z$ whose value is $\kappa (z)$. Then $i_*\mathcal{O}_ z$ is the coherent $\mathcal{O}_{X \times _ S Y}$-module supported at $z$ whose value is $\kappa (z)$. Our assumption means that

\[ K \otimes _{\mathcal{O}_{X \times _ S Y}}^\mathbf {L} i_*\mathcal{O}_ z = Li^*K \otimes _{\mathcal{O}_{Y_ s \times Y_ s}}^\mathbf {L} \mathcal{O}_ z = 0 \]

Hence by Lemma 57.11.3 we find an open neighbourhood $U(z) \subset X \times _ S Y$ of $z$ such that $K|_{U(z)} = 0$. In this case we set $Z(z) = \emptyset $ as closed subscheme of $U(z)$.

Case II: $z \in \Delta _{Y_ s/k}(Y_ s)$. Since $Y_ s$ is smooth over $k$ we know that $\Delta _{Y_ s/k} : Y_ s \to Y_ s \times Y_ s$ is a regular immersion, see More on Morphisms, Lemma 37.62.18. Choose a regular sequence $\overline{f}_1, \ldots , \overline{f}_ r \in \mathcal{O}_{Y_ s \times Y_ s, z}$ cutting out the ideal sheaf of $\Delta _{Y_ s/k}(Y_ s)$. Since a regular sequence is Koszul-regular (More on Algebra, Lemma 15.30.2) our assumption means that

\[ K_ z \otimes _{\mathcal{O}_{X \times _ S Y, z}}^\mathbf {L} \mathcal{O}_{Y_ s \times Y_ s, z} \in D(\mathcal{O}_{Y_ s \times Y_ s, z}) \]

is represented by the Koszul complex on $\overline{f}_1, \ldots , \overline{f}_ r$ over $\mathcal{O}_{Y_ s \times Y_ s, z}$. By Lemma 57.16.1 applied to $\mathcal{O}_{S, s} \to \mathcal{O}_{X \times _ S Y, z}$ we conclude that $K_ z \in D(\mathcal{O}_{X \times _ S Y, z})$ is represented by the Koszul complex on a regular sequence $f_1, \ldots , f_ r \in \mathcal{O}_{X \times _ S Y, z}$ lifting the regular sequence $\overline{f}_1, \ldots , \overline{f}_ r$ such that moreover $\mathcal{O}_{X \times _ S Y}/(f_1, \ldots , f_ r)$ is flat over $\mathcal{O}_{S, s}$. By some limit arguments (Lemma 57.16.2) we conclude that there exists an affine open neighbourhood $U(z) \subset X \times _ S Y$ of $z$ and a closed subscheme $Z(z) \subset U(z)$ such that

  1. $Z(z) \to U(z)$ is a regular closed immersion,

  2. $K|_{U(z)}$ is quasi-isomorphic to $\mathcal{O}_{Z(z)}$,

  3. $Z(z) \to S$ is flat,

  4. $Z(z)_ s = \Delta _{Y_ s/k}(Y_ s) \cap U(z)_ s$ as closed subschemes of $U(z)_ s$.

By property (2), for $z, z' \in Y_ s \times Y_ s$, we find that $Z(z) \cap U(z') = Z(z') \cap U(z)$ as closed subschemes. Hence we obtain an open neighbourhood

\[ U = \bigcup \nolimits _{z \in Y_ s \times Y_ s\text{ closed}} U(z) \]

of $Y_ s \times Y_ s$ in $X \times _ S Y$ and a closed subscheme $Z \subset U$ such that (1) $Z \to U$ is a regular closed immersion, (2) $Z \to S$ is flat, and (3) $Z_ s = \Delta _{Y_ s/k}(Y_ s)$. Since $X \times _ S Y \to S$ is proper, after replacing $S$ by an open neighbourhood of $s$ we may assume $U = X \times _ S Y$. Since the projections $Z_ s \to Y_ s$ and $Z_ s \to X_ s$ are isomorphisms, we conclude that after shrinking $S$ we may assume $Z \to Y$ and $Z \to X$ are isomorphisms, see Lemma 57.16.3. This finishes the proof. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G0R. Beware of the difference between the letter 'O' and the digit '0'.