Lemma 58.32.2. Let $k$ be a field of characteristic $p > 0$. Let $X \to \mathbf{A}^ n_ k$ be an étale morphism with $X$ affine. Then there exists a finite étale morphism $X \to \mathbf{A}^ n_ k$.

**Proof.**
Write $X = \mathop{\mathrm{Spec}}(C)$. Set $A = 0$ and denote $I = k[x_1, \ldots , x_ n]$. By assumption there exists some étale $k$-algebra map $\varphi : k[x_1, \ldots , x_ n] \to C$. Denote $\tau : C/\varphi (I)C \to 0$ the unique surjection. We may choose $\varphi $ and $\tau $ such that $N(C, \varphi , \tau )$ is minimal. By Lemma 58.32.1 we get $N(C, \varphi , \tau ) = 0$. Hence $\varphi $ is finite étale.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)