The Stacks project

58.32 Tricks in positive characteristic

In Piotr Achinger's paper [Achinger] it is shown that an affine scheme in positive characteristic is always a $K(\pi , 1)$. In this section we explain the more elementary parts of [Achinger]. Namely, we show that for a field $k$ of positive characteristic an affine scheme étale over $\mathbf{A}^ n_ k$ is actually finite étale over $\mathbf{A}^ n_ k$ (by a different morphism). We also show that a closed immersion of connected affine schemes in positive characteristic induces an injective map on étale fundamental groups.

Let $k$ be a field of characteristic $p > 0$. Let

\[ k[x_1, \ldots , x_ n] \longrightarrow A \]

be a surjection of finite type $k$-algebras whose source is the polynomial algebra on $x_1, \ldots , x_ n$. Denote $I \subset k[x_1, \ldots , x_ n]$ the kernel so that we have $A = k[x_1, \ldots , x_ n]/I$. We do not assume $A$ is nonzero (in other words, we allow the case where $A$ is the zero ring and $I = k[x_1, \ldots , x_ n]$). Finally, we assume given a finite étale ring map $\pi : A \to B$.

Suppose given $k, n, k[x_1, \ldots , x_ n] \to A, I, \pi : A \to B$. Let $C$ be a $k$-algebra. Consider commutative diagrams

\[ \xymatrix{ & B \\ C \ar[r] & C/\varphi (I)C \ar[u]^\tau \\ k[x_1, \ldots , x_ n] \ar[u]^\varphi \ar[r] & A \ar[u] \ar@/_3em/[uu]_\pi } \]

where $\varphi $ is an étale $k$-algebra map and $\tau $ is a surjective $k$-algebra map. Let $C, \varphi , \tau $ be given. For any $r \geq 0$ and $y_1, \ldots , y_ r \in C$ which generate $C$ as an algebra over $\mathop{\mathrm{Im}}(\varphi )$ let $s = s(r, y_1, \ldots , y_ r) \in \{ 0, \ldots , r\} $ be the maximal element such that $y_ i$ is integral over $\mathop{\mathrm{Im}}(\varphi )$ for $1 \leq i \leq s$. We define $NF(C, \varphi , \tau )$ to be the minimum value of $r - s = r - s(r, y_1, \ldots , y_ r)$ for all choices of $r$ and $y_1, \ldots , y_ r$ as above. Observe that $NF(C, \varphi , \tau )$ is $0$ if and only if $\varphi $ is finite.

Lemma 58.32.1. In the situation above, if $NF(C, \varphi , \tau ) > 0$, then there exist an étale $k$-algebra map $\varphi '$ and a surjective $k$-algebra map $\tau '$ fitting into the commutative diagram

\[ \xymatrix{ & B \\ C \ar[r] & C/\varphi '(I)C \ar[u]_{\tau '} \\ k[x_1, \ldots , x_ n] \ar[u]^{\varphi '} \ar[r] & A \ar[u] \ar@/_3em/[uu]_\pi } \]

with $NF(C, \varphi ', \tau ') < NF(C, \varphi , \tau )$.

Proof. Choose $r \geq 0$ and $y_1, \ldots , y_ r \in C$ which generate $C$ over $\mathop{\mathrm{Im}}(\varphi )$ and let $0 \leq s \leq r$ be such that $y_1, \ldots , y_ s$ are integral over $\mathop{\mathrm{Im}}(\varphi )$ such that $r - s = NF(C, \varphi , \tau ) > 0$. Since $B$ is finite over $A$, the image of $y_{s + 1}$ in $B$ satisfies a monic polynomial over $A$. Hence we can find $d \geq 1$ and $f_1, \ldots , f_ d \in k[x_1, \ldots , x_ n]$ such that

\[ z = y_{s + 1}^ d + \varphi (f_1) y_{s + 1}^{d - 1} + \ldots + \varphi (f_ d) \in J = \mathop{\mathrm{Ker}}(C \to C/\varphi (I)C \xrightarrow {\tau } B) \]

Since $\varphi : k[x_1, \ldots , x_ n] \to C$ is étale, we can find a nonzero and nonconstant polynomial $g \in k[T_1, \ldots , T_{n + 1}]$ such that

\[ g(\varphi (x_1), \ldots , \varphi (x_ n), z) = 0 \quad \text{in}\quad C \]

To see this you can use for example that $C \otimes _{\varphi , k[x_1, \ldots , x_ n]} k(x_1, \ldots , x_ n)$ is a finite product of finite separable field extensions of $k(x_1, \ldots , x_ n)$ (see Algebra, Lemmas 10.143.4) and hence $z$ satisfies a monic polynomial over $k(x_1, \ldots , x_ n)$. Clearing denominators we obtain $g$.

The existence of $g$ and Algebra, Lemma 10.115.2 produce integers $e_1, e_2, \ldots , e_ n \geq 1$ such that $z$ is integral over the subring $C'$ of $C$ generated by $t_1 = \varphi (x_1) + z^{pe_1}, \ldots , t_ n = \varphi (x_ n) + z^{pe_ n}$. Of course, the elements $\varphi (x_1), \ldots , \varphi (x_ n)$ are also integral over $C'$ as are the elements $y_1, \ldots , y_ s$. Finally, by our choice of $z$ the element $y_{s + 1}$ is integral over $C'$ too.

Consider the ring map

\[ \varphi ' : k[x_1, \ldots , x_ n] \longrightarrow C, \quad x_ i \longmapsto t_ i \]

with image $C'$. Since $\text{d}(\varphi (x_ i)) = \text{d}(t_ i) = \text{d}(\varphi '(x_ i))$ in $\Omega _{C/k}$ (and this is where we use the characteristic of $k$ is $p > 0$) we conclude that $\varphi '$ is étale because $\varphi $ is étale, see Algebra, Lemma 10.151.9. Observe that $\varphi '(x_ i) - \varphi (x_ i) = t_ i - \varphi (x_ i) = z^{pe_ i}$ is in the kernel $J$ of the map $C \to C/\varphi (I)C \to B$ by our choice of $z$ as an element of $J$. Hence for $f \in I$ the element

\[ \varphi '(f) = f(t_1, \ldots , t_ n) = f(\varphi (x_1) + z^{pe_1}, \ldots , \varphi (x_ n) + z^{pe_ n}) = \varphi (f) + \text{element of }(z) \]

is in $J$ as well. In other words, $\varphi '(I)C \subset J$ and we obtain a surjection

\[ \tau ' : C/\varphi '(I)C \longrightarrow C/J \cong B \]

of algebras étale over $A$. Finally, the algebra $C$ is generated by the elements $\varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_ r$ over $C' = \mathop{\mathrm{Im}}(\varphi ')$ with $\varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_{s + 1}$ integral over $C' = \mathop{\mathrm{Im}}(\varphi ')$. Hence $NF(C, \varphi ', \tau ') < r - s = NF(C, \varphi , \tau )$. This finishes the proof. $\square$

Lemma 58.32.2. Let $k$ be a field of characteristic $p > 0$. Let $X \to \mathbf{A}^ n_ k$ be an étale morphism with $X$ affine. Then there exists a finite étale morphism $X \to \mathbf{A}^ n_ k$.

Proof. Write $X = \mathop{\mathrm{Spec}}(C)$. Set $A = 0$ and denote $I = k[x_1, \ldots , x_ n]$. By assumption there exists some étale $k$-algebra map $\varphi : k[x_1, \ldots , x_ n] \to C$. Denote $\tau : C/\varphi (I)C \to 0$ the unique surjection. We may choose $\varphi $ and $\tau $ such that $N(C, \varphi , \tau )$ is minimal. By Lemma 58.32.1 we get $N(C, \varphi , \tau ) = 0$. Hence $\varphi $ is finite étale. $\square$

Lemma 58.32.3. Let $k$ be a field of characteristic $p > 0$. Let $Z \subset \mathbf{A}^ n_ k$ be a closed subscheme. Let $Y \to Z$ be finite étale. There exists a finite étale morphism $f : U \to \mathbf{A}^ n_ k$ such that there is an open and closed immersion $Y \to f^{-1}(Z)$ over $Z$.

Proof. Let us turn the problem into algebra. Write $\mathbf{A}^ n_ k = \mathop{\mathrm{Spec}}(k[x_1, \ldots , x_ n])$. Then $Z = \mathop{\mathrm{Spec}}(A)$ where $A = k[x_1, \ldots , x_ n]/I$ for some ideal $I \subset k[x_1, \ldots , x_ n]$. Write $Y = \mathop{\mathrm{Spec}}(B)$ so that $Y \to Z$ corresponds to the finite étale $k$-algebra map $A \to B$.

By Algebra, Lemma 10.143.10 there exists an étale ring map

\[ \varphi : k[x_1, \ldots , x_ n] \to C \]

and a surjective $A$-algebra map $\tau : C/\varphi (I)C \to B$. (We can even choose $C, \varphi , \tau $ such that $\tau $ is an isomorphism, but we won't use this). We may choose $\varphi $ and $\tau $ such that $N(C, \varphi , \tau )$ is minimal. By Lemma 58.32.1 we get $N(C, \varphi , \tau ) = 0$. Hence $\varphi $ is finite étale.

Let $f : U = \mathop{\mathrm{Spec}}(C) \to \mathbf{A}^ n_ k$ be the finite étale morphism corresponding to $\varphi $. The morphism $Y \to f^{-1}(Z) = \mathop{\mathrm{Spec}}(C/\varphi (I)C)$ induced by $\tau $ is a closed immersion as $\tau $ is surjective and open as it is an étale morphism by Morphisms, Lemma 29.36.18. This finishes the proof. $\square$

Here is the main result.

Proposition 58.32.4. Let $p$ be a prime number. Let $i : Z \to X$ be a closed immersion of connected affine schemes over $\mathbf{F}_ p$. For any geometric point $\overline{z}$ of $Z$ the map

\[ \pi _1(Z, \overline{z}) \to \pi _1(X, \overline{z}) \]

is injective.

Proof. Let $Y \to Z$ be a finite étale morphism. It suffices to construct a finite étale morphism $f : U \to X$ such that $Y$ is isomorphic to an open and closed subscheme of $f^{-1}(Z)$, see Lemma 58.4.4. Write $Y = \mathop{\mathrm{Spec}}(A)$ and $X = \mathop{\mathrm{Spec}}(R)$ so the closed immersion $Y \to X$ is given by a surjection $R \to A$. We may write $A = \mathop{\mathrm{colim}}\nolimits A_ i$ as the filtered colimit of its $\mathbf{F}_ p$-subalgebras of finite type. By Lemma 58.14.1 we can find an $i$ and a finite étale morphism $Y_ i \to Z_ i = \mathop{\mathrm{Spec}}(A_ i)$ such that $Y = Z \times _{Z_ i} Y_ i$.

Choose a surjection $\mathbf{F}_ p[x_1, \ldots , x_ n] \to A_ i$. This determines a closed immersion

\[ Z_ i = \mathop{\mathrm{Spec}}(A_ i) \longrightarrow X_ i = \mathbf{A}^ n_{\mathbf{F}_ p} = \mathop{\mathrm{Spec}}(\mathbf{F}_ p[x_1, \ldots , x_ n]) \]

By the universal property of polynomial algebras and since $R \to A$ is surjective, we can find a commutative diagram

\[ \xymatrix{ \mathbf{F}_ p[x_1, \ldots , x_ n] \ar[r] \ar[d] & A_ i \ar[d] \\ R \ar[r] & A } \]

of $\mathbf{F}_ p$-algebras. Thus we have a commutative diagram

\[ \xymatrix{ Y_ i \ar[r] & Z_ i \ar[r] & X_ i \\ Y \ar[u] \ar[r] & Z \ar[u] \ar[r] & X \ar[u] } \]

whose right square is cartesian. Clearly, if we can find $f_ i : U_ i \to X_ i$ finite étale such that $Y_ i$ is isomorphic to an open and closed subscheme of $f_ i^{-1}(Z_ i)$, then the base change $f : U \to X$ of $f_ i$ by $X \to X_ i$ is a solution to our problem. Thus we conclude by applying Lemma 58.32.3 to $Y_ i \to Z_ i \to X_ i = \mathbf{A}^ n_{\mathbf{F}_ p}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G1E. Beware of the difference between the letter 'O' and the digit '0'.