Lemma 58.32.1. In the situation above, if NF(C, \varphi , \tau ) > 0, then there exist an étale k-algebra map \varphi ' and a surjective k-algebra map \tau ' fitting into the commutative diagram
\xymatrix{ & B \\ C \ar[r] & C/\varphi '(I)C \ar[u]_{\tau '} \\ k[x_1, \ldots , x_ n] \ar[u]^{\varphi '} \ar[r] & A \ar[u] \ar@/_3em/[uu]_\pi }
with NF(C, \varphi ', \tau ') < NF(C, \varphi , \tau ).
Proof.
Choose r \geq 0 and y_1, \ldots , y_ r \in C which generate C over \mathop{\mathrm{Im}}(\varphi ) and let 0 \leq s \leq r be such that y_1, \ldots , y_ s are integral over \mathop{\mathrm{Im}}(\varphi ) such that r - s = NF(C, \varphi , \tau ) > 0. Since B is finite over A, the image of y_{s + 1} in B satisfies a monic polynomial over A. Hence we can find d \geq 1 and f_1, \ldots , f_ d \in k[x_1, \ldots , x_ n] such that
z = y_{s + 1}^ d + \varphi (f_1) y_{s + 1}^{d - 1} + \ldots + \varphi (f_ d) \in J = \mathop{\mathrm{Ker}}(C \to C/\varphi (I)C \xrightarrow {\tau } B)
Since \varphi : k[x_1, \ldots , x_ n] \to C is étale, we can find a nonzero and nonconstant polynomial g \in k[T_1, \ldots , T_{n + 1}] such that
g(\varphi (x_1), \ldots , \varphi (x_ n), z) = 0 \quad \text{in}\quad C
To see this you can use for example that C \otimes _{\varphi , k[x_1, \ldots , x_ n]} k(x_1, \ldots , x_ n) is a finite product of finite separable field extensions of k(x_1, \ldots , x_ n) (see Algebra, Lemmas 10.143.4) and hence z satisfies a monic polynomial over k(x_1, \ldots , x_ n). Clearing denominators we obtain g.
The existence of g and Algebra, Lemma 10.115.2 produce integers e_1, e_2, \ldots , e_ n \geq 1 such that z is integral over the subring C' of C generated by t_1 = \varphi (x_1) + z^{pe_1}, \ldots , t_ n = \varphi (x_ n) + z^{pe_ n}. Of course, the elements \varphi (x_1), \ldots , \varphi (x_ n) are also integral over C' as are the elements y_1, \ldots , y_ s. Finally, by our choice of z the element y_{s + 1} is integral over C' too.
Consider the ring map
\varphi ' : k[x_1, \ldots , x_ n] \longrightarrow C, \quad x_ i \longmapsto t_ i
with image C'. Since \text{d}(\varphi (x_ i)) = \text{d}(t_ i) = \text{d}(\varphi '(x_ i)) in \Omega _{C/k} (and this is where we use the characteristic of k is p > 0) we conclude that \varphi ' is étale because \varphi is étale, see Algebra, Lemma 10.151.9. Observe that \varphi '(x_ i) - \varphi (x_ i) = t_ i - \varphi (x_ i) = z^{pe_ i} is in the kernel J of the map C \to C/\varphi (I)C \to B by our choice of z as an element of J. Hence for f \in I the element
\varphi '(f) = f(t_1, \ldots , t_ n) = f(\varphi (x_1) + z^{pe_1}, \ldots , \varphi (x_ n) + z^{pe_ n}) = \varphi (f) + \text{element of }(z)
is in J as well. In other words, \varphi '(I)C \subset J and we obtain a surjection
\tau ' : C/\varphi '(I)C \longrightarrow C/J \cong B
of algebras étale over A. Finally, the algebra C is generated by the elements \varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_ r over C' = \mathop{\mathrm{Im}}(\varphi ') with \varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_{s + 1} integral over C' = \mathop{\mathrm{Im}}(\varphi '). Hence NF(C, \varphi ', \tau ') < r - s = NF(C, \varphi , \tau ). This finishes the proof.
\square
Comments (0)