Processing math: 100%

The Stacks project

Lemma 58.32.1. In the situation above, if NF(C, \varphi , \tau ) > 0, then there exist an étale k-algebra map \varphi ' and a surjective k-algebra map \tau ' fitting into the commutative diagram

\xymatrix{ & B \\ C \ar[r] & C/\varphi '(I)C \ar[u]_{\tau '} \\ k[x_1, \ldots , x_ n] \ar[u]^{\varphi '} \ar[r] & A \ar[u] \ar@/_3em/[uu]_\pi }

with NF(C, \varphi ', \tau ') < NF(C, \varphi , \tau ).

Proof. Choose r \geq 0 and y_1, \ldots , y_ r \in C which generate C over \mathop{\mathrm{Im}}(\varphi ) and let 0 \leq s \leq r be such that y_1, \ldots , y_ s are integral over \mathop{\mathrm{Im}}(\varphi ) such that r - s = NF(C, \varphi , \tau ) > 0. Since B is finite over A, the image of y_{s + 1} in B satisfies a monic polynomial over A. Hence we can find d \geq 1 and f_1, \ldots , f_ d \in k[x_1, \ldots , x_ n] such that

z = y_{s + 1}^ d + \varphi (f_1) y_{s + 1}^{d - 1} + \ldots + \varphi (f_ d) \in J = \mathop{\mathrm{Ker}}(C \to C/\varphi (I)C \xrightarrow {\tau } B)

Since \varphi : k[x_1, \ldots , x_ n] \to C is étale, we can find a nonzero and nonconstant polynomial g \in k[T_1, \ldots , T_{n + 1}] such that

g(\varphi (x_1), \ldots , \varphi (x_ n), z) = 0 \quad \text{in}\quad C

To see this you can use for example that C \otimes _{\varphi , k[x_1, \ldots , x_ n]} k(x_1, \ldots , x_ n) is a finite product of finite separable field extensions of k(x_1, \ldots , x_ n) (see Algebra, Lemmas 10.143.4) and hence z satisfies a monic polynomial over k(x_1, \ldots , x_ n). Clearing denominators we obtain g.

The existence of g and Algebra, Lemma 10.115.2 produce integers e_1, e_2, \ldots , e_ n \geq 1 such that z is integral over the subring C' of C generated by t_1 = \varphi (x_1) + z^{pe_1}, \ldots , t_ n = \varphi (x_ n) + z^{pe_ n}. Of course, the elements \varphi (x_1), \ldots , \varphi (x_ n) are also integral over C' as are the elements y_1, \ldots , y_ s. Finally, by our choice of z the element y_{s + 1} is integral over C' too.

Consider the ring map

\varphi ' : k[x_1, \ldots , x_ n] \longrightarrow C, \quad x_ i \longmapsto t_ i

with image C'. Since \text{d}(\varphi (x_ i)) = \text{d}(t_ i) = \text{d}(\varphi '(x_ i)) in \Omega _{C/k} (and this is where we use the characteristic of k is p > 0) we conclude that \varphi ' is étale because \varphi is étale, see Algebra, Lemma 10.151.9. Observe that \varphi '(x_ i) - \varphi (x_ i) = t_ i - \varphi (x_ i) = z^{pe_ i} is in the kernel J of the map C \to C/\varphi (I)C \to B by our choice of z as an element of J. Hence for f \in I the element

\varphi '(f) = f(t_1, \ldots , t_ n) = f(\varphi (x_1) + z^{pe_1}, \ldots , \varphi (x_ n) + z^{pe_ n}) = \varphi (f) + \text{element of }(z)

is in J as well. In other words, \varphi '(I)C \subset J and we obtain a surjection

\tau ' : C/\varphi '(I)C \longrightarrow C/J \cong B

of algebras étale over A. Finally, the algebra C is generated by the elements \varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_ r over C' = \mathop{\mathrm{Im}}(\varphi ') with \varphi (x_1), \ldots , \varphi (x_ n), y_1, \ldots , y_{s + 1} integral over C' = \mathop{\mathrm{Im}}(\varphi '). Hence NF(C, \varphi ', \tau ') < r - s = NF(C, \varphi , \tau ). This finishes the proof. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.