The Stacks project

Lemma 62.7.3. Let $X$ be a scheme. Let $X = U \cup V$ with $U$ and $V$ open. Let $\Lambda $ be a ring. Let $K \in D(X_{\acute{e}tale}, \Lambda )$. There is a distinguished triangle

\[ j_{U \cap V!}K|_{U \cap V} \to j_{U!}K|_ U \oplus j_{V!}K|_ V \to K \to j_{U \cap V!}K|_{U \cap V}[1] \]

in $D(X_{\acute{e}tale}, \Lambda )$ with obvious notation.

Proof. Since the restriction functors and the lower shriek functors we use are exact, it suffices to show for any abelian sheaf $\mathcal{F}$ on $X_{\acute{e}tale}$ the sequence

\[ 0 \to j_{U \cap V!}\mathcal{F}|_{U \cap V} \to j_{U!}\mathcal{F}|_ U \oplus j_{V!}\mathcal{F}|_ V \to \mathcal{F} \to 0 \]

is exact. This can be seen by looking at stalks. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GKK. Beware of the difference between the letter 'O' and the digit '0'.