The Stacks project

Lemma 63.11.5. Let $f : X \to Y$ be a separated finite type morphism of quasi-compact and quasi-separated schemes. Let $\Lambda $ be a torsion ring. For every $K \in D(Y_{\acute{e}tale}, \Lambda )$ and $L \in D(X_{\acute{e}tale}, \Lambda )$ the map (63.11.4.1)

\[ Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K) \longrightarrow R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K) \]

is an isomorphism.

Proof. To prove the lemma we have to show that for any $M \in D(Y_{\acute{e}tale}, \Lambda )$ the map (63.11.4.1) induces an bijection

\[ \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) \longrightarrow \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K)) \]

To see this we use the following string of equalities

\begin{align*} \mathop{\mathrm{Hom}}\nolimits _ Y(M, Rf_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) & = \mathop{\mathrm{Hom}}\nolimits _ X(f^{-1}M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (L, Rf^!K)) \\ & = \mathop{\mathrm{Hom}}\nolimits _ X(f^{-1}M \otimes _\Lambda ^\mathbf {L} L, Rf^!K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!(f^{-1}M \otimes _\Lambda ^\mathbf {L} L), K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M \otimes _\Lambda ^\mathbf {L} Rf_!L, K) \\ & = \mathop{\mathrm{Hom}}\nolimits _ Y(M, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\Lambda (Rf_!L, K)) \end{align*}

The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second equality by Cohomology on Sites, Lemma 21.35.2. The third equality by construction of $Rf^!$. The fourth equality by Lemma 63.10.7 (this is the important step). The fifth by Cohomology on Sites, Lemma 21.35.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GLC. Beware of the difference between the letter 'O' and the digit '0'.