Lemma 63.11.1. Let f : X \to Y be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a torsion coefficient ring. The functor Rf_! : D(X_{\acute{e}tale}, \Lambda ) \to D(Y_{\acute{e}tale}, \Lambda ) has a right adjoint Rf^! : D(Y_{\acute{e}tale}, \Lambda ) \to D(X_{\acute{e}tale}, \Lambda ).
63.11 Derived upper shriek
We obtain Rf^! by a Brown representability theorem.
Proof. This follows from Injectives, Proposition 19.15.2 and Lemma 63.10.1 above. \square
Lemma 63.11.2. Let f : X \to Y be a separated quasi-finite morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a torsion coefficient ring. The functor Rf^! : D(Y_{\acute{e}tale}, \Lambda ) \to D(X_{\acute{e}tale}, \Lambda ) of Lemma 63.11.1 is the same as the functor Rf^! of Lemma 63.7.1.
Proof. Follows from uniqueness of adjoints as Rf_! = f_! by Lemma 63.10.3. \square
Lemma 63.11.3. Let j : U \to X be a separated étale morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a torsion coefficient ring. The functor Rj^! : D(X_{\acute{e}tale}, \Lambda ) \to D(U_{\acute{e}tale}, \Lambda ) is equal to j^{-1}.
Proof. This is true because both Rj^! and j^{-1} are right adjoints to Rj_! = j_!. See for example Lemmas 63.11.2 and 63.6.2. \square
Lemma 63.11.4. Let f : X \to Y be a finite type separated morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a torsion ring. The functor Rf^! sends D^+(Y_{\acute{e}tale}, \Lambda ) into D^+(X_{\acute{e}tale}, \Lambda ). More precisely, there exists an integer N \geq 0 such that if K \in D(Y_{\acute{e}tale}, \Lambda ) has H^ i(K) = 0 for i < a then H^ i(Rf^!K) = 0 for i < a - N.
Proof. Let N be the integer found in Lemma 63.10.2. By construction, for K \in D(Y_{\acute{e}tale}, \Lambda ) and L \in \in D(X_{\acute{e}tale}, \Lambda ) we have \mathop{\mathrm{Hom}}\nolimits _ X(L, Rf^!K) = \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K). Suppose H^ i(K) = 0 for i < a. Then we take L = \tau _{\leq a - N - 1}Rf^!K. By Lemma 63.10.2 the complex Rf_!L has vanishing cohomology sheaves in degrees \leq a - 1. Hence \mathop{\mathrm{Hom}}\nolimits _ Y(Rf_!L, K) = 0 by Derived Categories, Lemma 13.27.3. Hence the canonical map \tau _{\leq a - N - 1}Rf^!K \to Rf^!K is zero which implies H^ i(Rf^!K) = 0 for i \leq a - N - 1. \square
Let f : X \to Y be a separated finite type morphism of quasi-separated and quasi-compact schemes. Let \Lambda be a torsion coefficient ring. For every K \in D(Y_{\acute{e}tale}, \Lambda ) and L \in D(X_{\acute{e}tale}, \Lambda ) we obtain a canonical map
Namely, this map is constructed as the composition
where the first arrow is Remark 63.10.9 and the second arrow is the counit Rf_!Rf^!K \to K of the adjunction.
Lemma 63.11.5. Let f : X \to Y be a separated finite type morphism of quasi-compact and quasi-separated schemes. Let \Lambda be a torsion ring. For every K \in D(Y_{\acute{e}tale}, \Lambda ) and L \in D(X_{\acute{e}tale}, \Lambda ) the map (63.11.4.1)
is an isomorphism.
Proof. To prove the lemma we have to show that for any M \in D(Y_{\acute{e}tale}, \Lambda ) the map (63.11.4.1) induces an bijection
To see this we use the following string of equalities
The first equality holds by Cohomology on Sites, Lemma 21.19.1. The second equality by Cohomology on Sites, Lemma 21.35.2. The third equality by construction of Rf^!. The fourth equality by Lemma 63.10.7 (this is the important step). The fifth by Cohomology on Sites, Lemma 21.35.2. \square
Lemma 63.11.6. Let f : X \to Y be a separated finite type morphism of quasi-separated and quasi-compact schemes. Let \Lambda be a torsion ring. For every K \in D(Y_{\acute{e}tale}, \Lambda ) and L \in D(X_{\acute{e}tale}, \Lambda ) the map (63.11.4.1) induces an isomorphism
of global derived homs.
Proof. By the construction in Cohomology on Sites, Section 21.36 we have
(the second equality by Leray) and
Thus the lemma is a consequence of Lemma 63.11.5. \square
Lemma 63.11.7. Consider a cartesian square
of quasi-compact and quasi-separated schemes with f separated and of finite type. Then we have Rf^! \circ Rg_* = Rg'_* \circ R(f')^!.
Proof. By uniqueness of adjoint functors this follows from base change for derived lower shriek: we have g^{-1} \circ Rf_! = Rf'_! \circ (g')^{-1} by Lemma 63.9.4. \square
Remark 63.11.8. Let \Lambda _1 \to \Lambda _2 be a homomorphism of torsion rings. Let f : X \to Y be a separated finite type morphism of quasi-compact and quasi-separated schemes. The diagram
commutes where res is the “restriction” functor which turns a \Lambda _2-module into a \Lambda _1-module using the given ring map. This holds by uniquenss of adjoints, the second commutative diagram of Remark 63.10.8 and because we have
This equality either for objects living over X_{\acute{e}tale} or on Y_{\acute{e}tale} is a very special case of Cohomology on Sites, Lemma 21.19.1.
Comments (0)