The Stacks project

Lemma 83.14.3. In Situation 83.3.3 let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}_{total}$. Suppose given $K_0 \in D(\mathcal{O}_0)$ and an isomorphism

\[ \alpha : L(f_{\delta _1^1})^*K_0 \longrightarrow L(f_{\delta _0^1})^*K_0 \]

satisfying the cocycle condition. Set $\tau ^ n_ i : [0] \to [n]$, $0 \mapsto i$ and set $K_ n = Lf_{\tau ^ n_ n}^*K_0$. The objects $K_ n$ form the members of a cartesian simplicial system of the derived category of modules.

Proof. Please compare with Lemmas 83.13.3 and 83.12.4 and its proof (also to see the cocycle condition spelled out). The construction is analogous to the construction discussed in Descent, Section 35.3 from which we borrow the notation $\tau ^ n_ i : [0] \to [n]$, $0 \mapsto i$ and $\tau ^ n_{ij} : [1] \to [n]$, $0 \mapsto i$, $1 \mapsto j$. Given $\varphi : [n] \to [m]$ we define $K_\varphi : L(f_\varphi )^*K_ n \to K_ m$ using

\[ \xymatrix{ L(f_\varphi )^*K_ n \ar@{=}[r] & L(f_\varphi )^* L(f_{\tau ^ n_ n})^*K_0 \ar@{=}[r] & L(f_{\tau ^ m_{\varphi (n)}})^*K_0 \ar@{=}[r] & L(f_{\tau ^ m_{\varphi (n)m}})^* L(f_{\delta ^1_1})^*K_0 \ar[d]_{L(f_{\tau ^ m_{\varphi (n)m}})^*\alpha } \\ & K_ m \ar@{=}[r] & L(f_{\tau ^ m_ m})^*K_0 \ar@{=}[r] & L(f_{\tau ^ m_{\varphi (n)m}})^* L(f_{\delta ^1_0})^*K_0 } \]

We omit the verification that the cocycle condition implies the maps compose correctly (in their respective derived categories) and hence give rise to a simplicial systems of the derived category of modules. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GMF. Beware of the difference between the letter 'O' and the digit '0'.