Remark 91.7.7. Let f : (X, \mathcal{O}_ X) \to (S, \mathcal{O}_ S), g : (Y, \mathcal{O}_ Y) \to (X, \mathcal{O}_ X), \mathcal{F}, \mathcal{G}, c : \mathcal{F} \to \mathcal{G}, 0 \to \mathcal{F} \to \mathcal{O}_{X'} \to \mathcal{O}_ X \to 0, \xi \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ X}(\mathop{N\! L}\nolimits _{X/S}, \mathcal{F}), 0 \to \mathcal{G} \to \mathcal{O}_{Y'} \to \mathcal{O}_ Y \to 0, and \zeta \in \mathop{\mathrm{Ext}}\nolimits ^1_{\mathcal{O}_ Y}(\mathop{N\! L}\nolimits _{Y/S}, \mathcal{G}) be as in Lemma 91.7.6. Using pushout along c : g^{-1}\mathcal{F} \to \mathcal{G} we can construct an extension
Using pullback along g^\sharp : g^{-1}\mathcal{O}_ X \to \mathcal{O}_ Y we can construct an extension
A diagram chase tells us that there exists an S-morphism Y' \to X' compatible with g and c if and only if \mathcal{O}'_1 is isomorphic to \mathcal{O}'_2 as g^{-1}f^{-1}\mathcal{O}_ S-algebra extensions of g^{-1}\mathcal{O}_ X by \mathcal{G}. By Lemma 91.7.4 these extensions are classified by the LHS of
Here the equality comes from tensor-hom adjunction and the equalities
For the first of these see Modules, Lemma 17.31.3; the second follows from the definition of derived pullback. Thus, in order to see that Lemma 91.7.6 is true, it suffices to show that \mathcal{O}'_1 corresponds to the image of \xi and that \mathcal{O}'_2 correspond to the image of \zeta . The correspondence between \xi and \mathcal{O}'_1 is immediate from the construction of the class \xi in Remark 91.7.5. For the correspondence between \zeta and \mathcal{O}'_2, we first choose a commutative diagram
such that g^{-1}f^{-1}\mathcal{O}_ S[\mathcal{E}] \to \mathcal{O}_ Y is surjective with kernel \mathcal{K}. Next choose a commutative diagram
such that g^{-1}f^{-1}\mathcal{O}_ S[\mathcal{E}'] \to g^{-1}\mathcal{O}_ X is surjective with kernel \mathcal{J}. (For example just take \mathcal{E}' = \mathcal{E} \amalg \mathcal{O}'_2 as a sheaf of sets.) The map \varphi induces a map of complexes \mathop{N\! L}\nolimits (\alpha ) \to \mathop{N\! L}\nolimits (\beta ) (notation as in Modules, Section 17.31) and in particular \bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2. Then \mathop{N\! L}\nolimits (\alpha ) \cong \mathop{N\! L}\nolimits _{Y/S} and \mathop{N\! L}\nolimits (\beta ) \cong \mathop{N\! L}\nolimits _{g^{-1}\mathcal{O}_ X/g^{-1}f^{-1}\mathcal{O}_ S} and the map of complexes \mathop{N\! L}\nolimits (\alpha ) \to \mathop{N\! L}\nolimits (\beta ) represents the map Lg^*\mathop{N\! L}\nolimits _{X/S} \to \mathop{N\! L}\nolimits _{Y/S} used in the statement of Lemma 91.7.6 (see first part of its proof). Now \zeta corresponds to the class of the map \mathcal{K}/\mathcal{K}^2 \to \mathcal{G} induced by \beta ', see Remark 91.7.5. Similarly, the extension \mathcal{O}'_2 corresponds to the map \mathcal{J}/\mathcal{J}^2 \to \mathcal{G} induced by \alpha '. The commutative diagram above shows that this map is the composition of the map \mathcal{K}/\mathcal{K}^2 \to \mathcal{G} induced by \beta ' with the map \bar\varphi : \mathcal{J}/\mathcal{J}^2 \to \mathcal{K}/\mathcal{K}^2. This proves the compatibility we were looking for.
Comments (0)