The Stacks project

Lemma 13.5.7. Let $\mathcal{D}$ be a pre-triangulated category and let $\mathcal{D}' \subset \mathcal{D}$ be a full, pre-triangulated subcategory. Let $S$ be a saturated multiplicative system of $\mathcal{D}$ compatible with the triangulated structure. Assume that for each $X$ in $\mathcal{D}$ there exists an $s : X' \to X$ in $S$ such that $X'$ is an object of $\mathcal{D}'$. Then $S' = S \cap \text{Arrows}(\mathcal{D}')$ is a saturated multiplicative system compatible with the triangulated structure and the functor

\[ (S')^{-1}\mathcal{D}' \longrightarrow S^{-1}\mathcal{D} \]

is an equivalence of pre-triangulated categories.

Proof. Consider the quotient functor $Q : \mathcal{D} \to S^{-1}\mathcal{D}$ of Proposition 13.5.5. Since $S$ is saturated we have that a morphism $f : X \to Y$ is in $S$ if and only if $Q(f)$ is invertible, see Categories, Lemma 4.27.21. Thus $S'$ is the collection of arrows which are turned into isomorphisms by the composition $\mathcal{D}' \to \mathcal{D} \to S^{-1}\mathcal{D}$. Hence $S'$ is is a saturated multiplicative system compatible with the triangulated structure by Lemma 13.5.3. By Lemma 13.5.6 we obtain the exact functor $(S')^{-1}\mathcal{D}' \to S^{-1}\mathcal{D}$ of pre-triangulated categories. By assumption this functor is essentially surjective. Let $X', Y'$ be objects of $\mathcal{D}'$. By Categories, Remark 4.27.15 we have

\[ \mathop{\mathrm{Mor}}\nolimits _{S^{-1}\mathcal{D}}(X', Y') = \mathop{\mathrm{colim}}\nolimits _{s : X \to X'\text{ in }S} \mathop{\mathrm{Mor}}\nolimits _\mathcal {D}(X, Y') \]

Our assumption implies that for any $s : X \to X'$ in $S$ we can find a morphism $s' : X'' \to X$ in $S$ with $X''$ in $\mathcal{D}'$. Then $s \circ s' : X'' \to X'$ is in $S'$. Hence the colimit above is equal to

\[ \mathop{\mathrm{colim}}\nolimits _{s'' : X'' \to X'\text{ in }S'} \mathop{\mathrm{Mor}}\nolimits _{\mathcal{D}'}(X'', Y') = \mathop{\mathrm{Mor}}\nolimits _{(S')^{-1}\mathcal{D}'}(X', Y') \]

This proves our functor is also fully faithful and the proof is complete. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 13.5: Localization of triangulated categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GSL. Beware of the difference between the letter 'O' and the digit '0'.