Lemma 101.48.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Assume $Y$ is decent and $f$ is representable (by schemes) or $f$ is representable by algebraic spaces and quasi-separated. Then $\mathcal{X}$ is decent.

**Proof.**
Let $x \in |\mathcal{X}|$ with image $y \in |\mathcal{Y}|$. Choose a morphism $y : \mathop{\mathrm{Spec}}(k) \to \mathcal{Y}$ in the equivalence class defining $y$. Set $\mathcal{X}_ y = \mathop{\mathrm{Spec}}(k) \times _{y, \mathcal{Y}} \mathcal{X}$. Choose a point $x' \in |\mathcal{X}_ y|$ mapping to $x$, see Properties of Stacks, Lemma 100.4.3. Choose a morphism $x' : \mathop{\mathrm{Spec}}(k') \to \mathcal{X}_ y$ in the equivalence class of $x'$. Diagram

The morphism $y$ is quasi-compact if $\mathcal{Y}$ is decent. Hence $\mathcal{X}_ y \to \mathcal{X}$ is quasi-compact as a base change (Lemma 101.7.3). Thus to conclude it suffices to prove that $x'$ is quasi-compact (Lemma 101.7.4). If $f$ is representable, then $\mathcal{X}_ y$ is a scheme and $x'$ is quasi-compact. If $f$ is representable by algebraic spaces and quasi-separated, then $\mathcal{X}_ y$ is a quasi-separated algebraic space and hence decent (Decent Spaces, Lemma 68.17.2). $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)