Lemma 101.48.4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $f$ is quasi-compact and surjective and $\mathcal{X}$ is decent, then $\mathcal{Y}$ is decent.
Proof. Let $x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ be a morphism where $k$ is a field and denote $y = f \circ x$. Since $f$ is surjective, every point of $|\mathcal{Y}|$ arises in this manner, see Properties of Stacks, Lemma 100.4.4. Consider an affine scheme $T$ and morphism $T \to \mathcal{Y}$. It suffices to show that $T \times _{\mathcal{Y}, y} \mathop{\mathrm{Spec}}(k)$ is quasi-compact, see Lemma 101.7.10. We have
The morphism $T \times _{\mathcal{Y}} \mathcal{X} \to T$ is quasi-compact hence $T \times _\mathcal {Y} \mathcal{X}$ is quasi-compact. Since $x$ is a quasi-compact morphism as $\mathcal{X}$ is decent we see that the displayed fibre product is quasi-compact. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)