Lemma 100.48.4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $f$ is quasi-compact and surjective and $\mathcal{X}$ is decent, then $\mathcal{Y}$ is decent.

**Proof.**
Let $x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ be a morphism where $k$ is a field and denote $y = f \circ x$. Since $f$ is surjective, every point of $|\mathcal{Y}|$ arises in this manner, see Properties of Stacks, Lemma 99.4.4. Consider an affine scheme $T$ and morphism $T \to \mathcal{Y}$. It suffices to show that $T \times _{\mathcal{Y}, y} \mathop{\mathrm{Spec}}(k)$ is quasi-compact, see Lemma 100.7.10. We have

The morphism $T \times _{\mathcal{Y}} \mathcal{X} \to T$ is quasi-compact hence $T \times _\mathcal {Y} \mathcal{X}$ is quasi-compact. Since $x$ is a quasi-compact morphism as $\mathcal{X}$ is decent we see that the displayed fibre product is quasi-compact. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)