Definition 100.48.1. Let $\mathcal{X}$ be an algebraic stack. We say $\mathcal{X}$ is *decent* if for every $x \in |\mathcal{X}|$ the equivalent conditions of Properties of Stacks, Lemma 99.14.1 are satisfied.

## 100.48 Decent algebraic stacks

This section is the analogue of Decent Spaces, Section 67.6. In particular, the following definition is compatible with the notion of a decent algebraic space defined there.

Some people would rephrase this definition by saying that every point of $\mathcal{X}$ is quasi-compact. A slightly stronger condition would be to ask that any morphism $\mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ in the equivalence class of $x$ is quasi-separated as well as quasi-compact.

Lemma 100.48.2. A quasi-separated algebraic stack $\mathcal{X}$ is decent. More generally, if $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is quasi-compact, then $\mathcal{X}$ is decent.

**Proof.**
Namely, if $\mathcal{X}$ is quasi-separated, then any morphism $f : T \to \mathcal{X}$ whose source is a quasi-compact scheme $T$, is quasi-compact, see Lemma 100.7.7. If $\Delta $ is on known to be quasi-compact, then one uses the description

to prove this. Details omitted. $\square$

Lemma 100.48.3. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Assume $Y$ is decent and $f$ is representable (by schemes) or $f$ is representable by algebraic spaces and quasi-separated. Then $\mathcal{X}$ is decent.

**Proof.**
Let $x \in |\mathcal{X}|$ with image $y \in |\mathcal{Y}|$. Choose a morphism $y : \mathop{\mathrm{Spec}}(k) \to \mathcal{Y}$ in the equivalence class defining $y$. Set $\mathcal{X}_ y = \mathop{\mathrm{Spec}}(k) \times _{y, \mathcal{Y}} \mathcal{X}$. Choose a point $x' \in |\mathcal{X}_ y|$ mapping to $x$, see Properties of Stacks, Lemma 99.4.3. Choose a morphism $x' : \mathop{\mathrm{Spec}}(k') \to \mathcal{X}_ y$ in the equivalence class of $x'$. Diagram

The morphism $y$ is quasi-compact if $\mathcal{Y}$ is decent. Hence $\mathcal{X}_ y \to \mathcal{X}$ is quasi-compact as a base change (Lemma 100.7.3). Thus to conclude it suffices to prove that $x'$ is quasi-compact (Lemma 100.7.4). If $f$ is representable, then $\mathcal{X}_ y$ is a scheme and $x'$ is quasi-compact. If $f$ is representable by algebraic spaces and quasi-separated, then $\mathcal{X}_ y$ is a quasi-separated algebraic space and hence decent (Decent Spaces, Lemma 67.17.2). $\square$

Lemma 100.48.4. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $f$ is quasi-compact and surjective and $\mathcal{X}$ is decent, then $\mathcal{Y}$ is decent.

**Proof.**
Let $x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ be a morphism where $k$ is a field and denote $y = f \circ x$. Since $f$ is surjective, every point of $|\mathcal{Y}|$ arises in this manner, see Properties of Stacks, Lemma 99.4.4. Consider an affine scheme $T$ and morphism $T \to \mathcal{Y}$. It suffices to show that $T \times _{\mathcal{Y}, y} \mathop{\mathrm{Spec}}(k)$ is quasi-compact, see Lemma 100.7.10. We have

The morphism $T \times _{\mathcal{Y}} \mathcal{X} \to T$ is quasi-compact hence $T \times _\mathcal {Y} \mathcal{X}$ is quasi-compact. Since $x$ is a quasi-compact morphism as $\mathcal{X}$ is decent we see that the displayed fibre product is quasi-compact. $\square$

Lemma 100.48.5. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ and $\mathcal{X}$ is decent, then $\mathcal{Y}$ is decent.

**Proof.**
Assume $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ and $\mathcal{X}$ is decent. Note that $f$ is a universal homeomorphism by Lemma 100.28.13. Thus the lemma follows from Lemma 100.48.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)