Lemma 101.48.5. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. If $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ and $\mathcal{X}$ is decent, then $\mathcal{Y}$ is decent.
Proof. Assume $\mathcal{X}$ is a gerbe over $\mathcal{Y}$ and $\mathcal{X}$ is decent. Note that $f$ is a universal homeomorphism by Lemma 101.28.13. Thus the lemma follows from Lemma 101.48.4. $\square$
Comments (0)