Lemma 32.17.2. Let $S$ be a Nagata scheme (and in particular locally Noetherian). Let $f : X \to Y$ be a morphism of schemes locally of finite type over $S$. The following are equivalent
$f$ separated,
for any commutative diagram
\[ \xymatrix{ U \ar[r] \ar[d] & X \ar[d]^ f \\ C \ar[r] \ar@{..>}[ru] & Y } \]of schemes over $S$ such that
$C$ is a normal integral scheme of finite type over $S$,
$U = C \setminus \{ c\} $ for some closed point $c \in C$,
$A = \mathcal{O}_{C, c}$ has dimension $1$1
then in the commutative diagram
\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(A) \ar[r] \ar@{-->}[ru] & Y } \]where $K = \text{Frac}(A)$ there exists at most one dotted arrow2 making the diagram commute.
Comments (0)