Lemma 87.8.4. In the situation above, if $B$ is weakly pre-adic, then $A$ is weakly pre-adic.

**Proof.**
We will use the characterization of weakly pre-adic rings given in Lemma 87.7.2 without further mention. By Lemma 87.8.3 the topological ring $A$ is pre-admissible. Let $I \subset A$ be an ideal of definition. Fix $n \geq 1$. To prove the lemma we have to show that the closure of $I^ n$ is open. Let $I_\lambda \subset A$ be a fundamental system of open ideals. Denote $J \subset B$, resp. $J_\lambda \subset B$ the closure of $IB$, resp. $I_\lambda B$. Since $B$ is weakly pre-adic, the closure of $J^ n$ is open. Hence there exists a $\lambda $ such that

because the right hand side is the closure of $J^ n$ by Lemma 87.4.2. This means that the image of $J_\lambda $ in $B/J_\mu $ is contained in the image of $J^ n$ in $B/J_\mu $. Observe that the image of $J^ n$ in $B/J_\mu $ is equal to the image of $I^ nB$ in $B/J_\mu $ (since every element of $J$ is congruent to an element of $IB$ modulo $J_\mu $). Since $A/I_\mu \to B/J_\mu $ is faithfully flat and since $I_\lambda B \subset J_\lambda $, we conclude that the image of $I_\lambda $ in $A/I_\mu $ is contained in the image of $I^ n$. We conclude that $I_\lambda $ is contained in the closure of $I^ n$ and the proof is complete. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)