The Stacks project

Lemma 87.8.5. In the situation above, if $B$ is adic and has a finitely generated ideal of definition and $A$ is complete, then $A$ is adic and has a finitely generated ideal of definition.

Proof. We already know that $A$ is weakly adic and a fortiori admissible by Lemma 87.8.4 (and Lemma 87.7.2 to see that adic rings are weakly adic). Let $I \subset A$ be an ideal of definition. Let $J \subset B$ be a finitely generated ideal of definition. Since the closure of $IB$ is open, we can find an $n > 0$ such that $J^ n$ is contained in the closure of $IB$. Thus after replacing $J$ by $J^ n$ we may assume $J$ is a finitely generated ideal of definition contained in the closure of $IB$. By Lemma 87.4.2 this certainly implies that

\[ J \subset IB + J^2 \]

Consider the finitely generated $A$-module $M = (J + IB)/IB$. The displayed equation shows that $JM = M$. By Lemma 87.4.9 (for example) we see that $J$ is contained in the Jacobson radical of $B$. Hence by Nakayama's lemma, more precisely part (2) of Algebra, Lemma 10.20.1, we conclude $M = 0$. Thus $J \subset IB$.

Since $J$ is finitely generated, we can find a finitely generated ideal $I' \subset I$ such that $J \subset I'B$. Since $A \to B$ is continuous, $J \subset B$ is open, and $I$ is an ideal of definition, we can find an $n > 0$ such that $I^ nB \subset J$. Let $J_{n + 1} \subset B$ be the closure of $I^{n + 1}B$. We have

\[ I^ n \cdot (B/J_{n + 1}) \subset J \cdot (B/J_{n + 1}) \subset I' \cdot (B/J_{n + 1}) \]

Since $A/I^{n + 1} \to B/J_{n + 1}$ is faithfully flat, this implies $I^ n \cdot (A/I^{n + 1}) \subset I' \cdot (A/I^{n + 1})$ which in turn means

\[ I^ n \subset I' + I^{n + 1} \]

This implies $I^ n \subset I' + I^{n + k}$ for all $k \geq 1$ which in turn implies that $I^{nm} \subset (I')^ m + I^{nm + k}$ for all $k, m \geq 1$. This implies that the closure of $(I')^ m$ contains $I^{nm}$. Since the closure of $I^{nm}$ is open as $A$ is weakly adic, we conclude that the closure $(I')^ m$ is open for all $m$. Since these closures form a fundamental system of open ideals of $A$ (as the same thing is true for the closures of $I^ n$) we conclude by Lemma 87.7.3. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GXQ. Beware of the difference between the letter 'O' and the digit '0'.