Lemma 21.43.6. In the situation above, there exists a cardinal \kappa with the following property: given a complex \mathcal{F}^\bullet of \mathcal{O}-modules and subsets \Omega ^ i_ U \subset \mathcal{F}^ i(U) there exists a subcomplex \mathcal{H}^\bullet \subset \mathcal{F}^\bullet with \Omega ^ i_ U \subset \mathcal{H}^ i(U) and |\mathcal{H}^\bullet | \leq \max (\kappa , |\bigcup \Omega ^ i_ U|).
Proof. Define \mathcal{H}^ i(U) to be the \mathcal{O}(U)-submodule of \mathcal{F}^ i(U) generated by the images of \Omega ^ i_ V and \text{d}(\Omega ^{i - 1}_ U) by restriction along any morphism f : U \to V. The cardinality of \mathcal{H}^ i(U) is bounded by the maximum of \aleph _0, the cardinality of the \mathcal{O}(U), the cardinality of \text{Arrows}(\mathcal{C}), and |\bigcup \Omega ^ i_ U|. Details omitted. \square
Comments (0)