The Stacks project

Lemma 62.12.1. Let $(S, \delta )$ be as in Section 62.11. Let $f : X' \to X$ be a proper morphism of schemes locally of finite type over $S$. Let $(\mathcal{L}, s, i : D \to X)$ be as in Chow Homology, Definition 42.29.1. Form the diagram

\[ \xymatrix{ D' \ar[d]_ g \ar[r]_{i'} & X' \ar[d]^ f \\ D \ar[r]^ i & X } \]

as in Chow Homology, Remark 42.29.7. If $\mathcal{L}|_ D \cong \mathcal{O}_ D$, then $i^*f_*\alpha ' = g_*(i')^*\alpha '$ in $Z_ k(D)$ for any $\alpha ' \in Z_{k + 1}(X')$.

Proof. The statement makes sense as all operations are defined on the level of cycles, see Chow Homology, Remark 42.29.6 for the gysin maps. Suppose $\alpha = [W']$ for some integral closed subscheme $W' \subset X'$. Let $W = f(W') \subset X$. In case $W' \not\subset D'$, then $W \not\subset D$ and we see that

\[ [W' \cap D']_ k = \text{div}_{\mathcal{L}'|_{W'}}({s'|_{W'}}) \quad \text{and}\quad [W \cap D]_ k = \text{div}_{\mathcal{L}|_ W}(s|_ W) \]

and hence $f_*$ of the first cycle equals the second cycle by Chow Homology, Lemma 42.26.3. Hence the equality holds as cycles. In case $W' \subset D'$, then $W \subset D$ and both sides are zero by construction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H6D. Beware of the difference between the letter 'O' and the digit '0'.