Lemma 32.4.8. In Situation 32.4.5. Suppose for each $i$ we are given a nonempty closed subset $Z_ i \subset S_ i$ with $f_{i'i}(Z_{i'}) \subset Z_ i$ for all $i' \geq i$. Then there exists a point $s \in S$ with $f_ i(s) \in Z_ i$ for all $i$.
Proof. Let $Z_ i \subset S_ i$ also denote the reduced closed subscheme associated to $Z_ i$, see Schemes, Definition 26.12.5. A closed immersion is affine, and a composition of affine morphisms is affine (see Morphisms, Lemmas 29.11.9 and 29.11.7), and hence $Z_{i'} \to S_ i$ is affine when $i' \geq i$. We conclude that the morphism $f_{i'i} : Z_{i'} \to Z_ i$ is affine by Morphisms, Lemma 29.11.11. Each of the schemes $Z_ i$ is quasi-compact as a closed subscheme of a quasi-compact scheme. Hence we may apply Lemma 32.4.3 to see that $Z = \mathop{\mathrm{lim}}\nolimits _ i Z_ i$ is nonempty. Since there is a canonical morphism $Z \to S$ we win. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6811 by 羽山籍真 on
Comment #6954 by Johan on