Lemma 67.3.6. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$, and let $U$ be a scheme over $S$. Let $\varphi : U \to X$ be a morphism over $S$. If the fibres of $\varphi $ are universally bounded, then there exists an integer $n$ such that each fibre of $|U| \to |X|$ has at most $n$ elements.

**Proof.**
The integer $n$ of Definition 67.3.1 works. Namely, pick $x \in |X|$. Represent $x$ by a morphism $x : \mathop{\mathrm{Spec}}(k) \to X$. Then we get a commutative diagram

which shows (via Properties of Spaces, Lemma 65.4.3) that the inverse image of $x$ in $|U|$ is the image of the top horizontal arrow. Since $\mathop{\mathrm{Spec}}(k) \times _ X U$ is finite of degree $\leq n$ over $k$ it has at most $n$ points. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)