The Stacks project

Lemma 100.10.1. Let $\mathcal{X}$ be an algebraic stack. Let $T \subset |\mathcal{X}|$ be a closed subset. There exists a unique closed substack $\mathcal{Z} \subset \mathcal{X}$ with the following properties: (a) we have $|\mathcal{Z}| = T$, and (b) $\mathcal{Z}$ is reduced.

Proof. Let $U \to \mathcal{X}$ be a surjective smooth morphism, where $U$ is an algebraic space. Set $R = U \times _\mathcal {X} U$, so that there is a presentation $[U/R] \to \mathcal{X}$, see Algebraic Stacks, Lemma 94.16.2. As usual we denote $s, t : R \to U$ the two smooth projection morphisms. By Lemma 100.4.5 we see that $T$ corresponds to a closed subset $T' \subset |U|$ such that $|s|^{-1}(T') = |t|^{-1}(T')$. Let $Z \subset U$ be the reduced induced algebraic space structure on $T'$, see Properties of Spaces, Definition 66.12.5. The fibre products $Z \times _{U, t} R$ and $R \times _{s, U} Z$ are closed subspaces of $R$ (Spaces, Lemma 65.12.3). The projections $Z \times _{U, t} R \to Z$ and $R \times _{s, U} Z \to Z$ are smooth by Morphisms of Spaces, Lemma 67.37.3. Thus as $Z$ is reduced, it follows that $Z \times _{U, t} R$ and $R \times _{s, U} Z$ are reduced, see Remark 100.7.3. Since

\[ |Z \times _{U, t} R| = |t|^{-1}(T') = |s|^{-1}(T') = R \times _{s, U} Z \]

we conclude from the uniqueness in Properties of Spaces, Lemma 66.12.3 that $Z \times _{U, t} R = R \times _{s, U} Z$. Hence $Z$ is an $R$-invariant closed subspace of $U$. By the correspondence of Lemma 100.9.11 we obtain a closed substack $\mathcal{Z} \subset \mathcal{X}$ with $Z = \mathcal{Z} \times _\mathcal {X} U$. Then $[Z/R_ Z] \to \mathcal{Z}$ is a presentation (Lemma 100.9.7). Then $|\mathcal{Z}| = |Z|/|R_ Z| = |T'|/\sim $ is the given closed subset $T$. We omit the proof of unicity. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0509. Beware of the difference between the letter 'O' and the digit '0'.