We end this section with some examples and non-examples of Mittag-Leffler modules.
We also want to add to our list of examples power series rings over a Noetherian ring R. This will be a consequence the following lemma.
Proof.
The implication (1) \Rightarrow (2) is a special case of Lemma 10.89.6. Assume (2). By Theorem 10.81.4 we can write M as the colimit M = \mathop{\mathrm{colim}}\nolimits _{i \in I} M_ i of a directed system (M_ i, f_{ij}) of finite free R-modules. By Remark 10.88.8, it suffices to show that the inverse system (\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R), \mathop{\mathrm{Hom}}\nolimits _ R(f_{ij}, R)) is Mittag-Leffler. In other words, fix i \in I and for j \geq i let Q_ j be the image of \mathop{\mathrm{Hom}}\nolimits _ R(M_ j, R) \to \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R); we must show that the Q_ j stabilize.
Since M_ i is free and finite, we can make the identification \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, M_ j) = \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j for all j. Using the fact that the M_ j are free, it follows that for j \geq i, Q_ j is the smallest submodule of \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) such that f_{ij} \in Q_ j \otimes _ R M_ j. Under the identification \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, M) = \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M, the canonical map f_ i: M_ i \to M is in \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M. By the assumption on M, there exists a smallest submodule Q of \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) such that f_ i \in Q \otimes _ R M. We are going to show that the Q_ j stabilize to Q.
For j \geq i we have a commutative diagram
\xymatrix{ Q_ j \otimes _ R M_ j \ar[r] \ar[d] & \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j \ar[d] \\ Q_ j \otimes _ R M \ar[r] & \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M. }
Since f_{ij} \in Q_ j \otimes _ R M_ j maps to f_ i \in \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M, it follows that f_ i \in Q_ j \otimes _ R M. Hence, by the choice of Q, we have Q \subset Q_ j for all j \geq i.
Since the Q_ j are decreasing and Q \subset Q_ j for all j \geq i, to show that the Q_ j stabilize to Q it suffices to find a j \geq i such that Q_ j \subset Q. As an element of
\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M = \mathop{\mathrm{colim}}\nolimits _{j \in J} (\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j),
f_ i is the colimit of f_{ij} for j \geq i, and f_ i also lies in the submodule
\mathop{\mathrm{colim}}\nolimits _{j \in J} (Q \otimes _ R M_ j) \subset \mathop{\mathrm{colim}}\nolimits _{j \in J} (\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j).
It follows that for some j \geq i, f_{ij} lies in Q \otimes _ R M_ j. Since Q_ j is the smallest submodule of \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) with f_{ij} \in Q_ j \otimes _ R M_ j, we conclude Q_ j\subset Q.
\square
Proof.
Combining Lemma 10.90.5 and Proposition 10.90.6 we see that M is flat over R. We show that M satisfies the condition of Lemma 10.91.2. Let F be a free finite R-module. If F' is any submodule of F then it is finitely presented since R is Noetherian. So by Proposition 10.89.3 we have a commutative diagram
\xymatrix{ F' \otimes _ R M \ar[r] \ar[d]^{\cong } & F \otimes _ R M \ar[d]^{\cong } \\ (F')^ A \ar[r] & F^ A }
by which we can identify the map F' \otimes _ R M \to F \otimes _ R M with (F')^ A \to F^ A. Hence if x \in F \otimes _ R M corresponds to (x_\alpha ) \in F^ A, then the submodule of F' of F generated by the x_\alpha is the smallest submodule of F such that x \in F' \otimes _ R M.
\square
Comments (0)