The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

10.90 Examples and non-examples of Mittag-Leffler modules

We end this section with some examples and non-examples of Mittag-Leffler modules.

Example 10.90.1. Mittag-Leffler modules.

  1. Any finitely presented module is Mittag-Leffler. This follows, for instance, from Proposition 10.87.6 (1). In general, it is true that a finitely generated module is Mittag-Leffler if and only it is finitely presented. This follows from Propositions 10.88.2, 10.88.3, and 10.88.5.

  2. A free module is Mittag-Leffler since it satisfies condition (1) of Proposition 10.87.6.

  3. By the previous example together with Lemma 10.88.10, projective modules are Mittag-Leffler.

We also want to add to our list of examples power series rings over a Noetherian ring $R$. This will be a consequence the following lemma.

Lemma 10.90.2. Let $M$ be a flat $R$-module. The following are equivalent

  1. $M$ is Mittag-Leffler, and

  2. if $F$ is a finite free $R$-module and $x \in F \otimes _ R M$, then there exists a smallest submodule $F'$ of $F$ such that $x \in F' \otimes _ R M$.

Proof. The implication (1) $\Rightarrow $ (2) is a special case of Lemma 10.88.6. Assume (2). By Theorem 10.80.4 we can write $M$ as the colimit $M = \mathop{\mathrm{colim}}\nolimits _{i \in I} M_ i$ of a directed system $(M_ i, f_{ij})$ of finite free $R$-modules. By Remark 10.87.8, it suffices to show that the inverse system $(\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R), \mathop{\mathrm{Hom}}\nolimits _ R(f_{ij}, R))$ is Mittag-Leffler. In other words, fix $i \in I$ and for $j \geq i$ let $Q_ j$ be the image of $\mathop{\mathrm{Hom}}\nolimits _ R(M_ j, R) \to \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R)$; we must show that the $Q_ j$ stabilize.

Since $M_ i$ is free and finite, we can make the identification $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, M_ j) = \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j$ for all $j$. Using the fact that the $M_ j$ are free, it follows that for $j \geq i$, $Q_ j$ is the smallest submodule of $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R)$ such that $f_{ij} \in Q_ j \otimes _ R M_ j$. Under the identification $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, M) = \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M$, the canonical map $f_ i: M_ i \to M$ is in $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M$. By the assumption on $M$, there exists a smallest submodule $Q$ of $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R)$ such that $f_ i \in Q \otimes _ R M$. We are going to show that the $Q_ j$ stabilize to $Q$.

For $j \geq i$ we have a commutative diagram

\[ \xymatrix{ Q_ j \otimes _ R M_ j \ar[r] \ar[d] & \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j \ar[d] \\ Q_ j \otimes _ R M \ar[r] & \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M. } \]

Since $f_{ij} \in Q_ j \otimes _ R M_ j$ maps to $f_ i \in \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M$, it follows that $f_ i \in Q_ j \otimes _ R M$. Hence, by the choice of $Q$, we have $Q \subset Q_ j$ for all $j \geq i$.

Since the $Q_ j$ are decreasing and $Q \subset Q_ j$ for all $j \geq i$, to show that the $Q_ j$ stabilize to $Q$ it suffices to find a $j \geq i$ such that $Q_ j \subset Q$. As an element of

\[ \mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M = \mathop{\mathrm{colim}}\nolimits _{j \in J} (\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j), \]

$f_ i$ is the colimit of $f_{ij}$ for $j \geq i$, and $f_ i$ also lies in the submodule

\[ \mathop{\mathrm{colim}}\nolimits _{j \in J} (Q \otimes _ R M_ j) \subset \mathop{\mathrm{colim}}\nolimits _{j \in J} (\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R) \otimes _ R M_ j). \]

It follows that for some $j \geq i$, $f_{ij}$ lies in $Q \otimes _ R M_ j$. Since $Q_ j$ is the smallest submodule of $\mathop{\mathrm{Hom}}\nolimits _ R(M_ i, R)$ with $f_{ij} \in Q_ j \otimes _ R M_ j$, we conclude $Q_ j\subset Q$. $\square$

Lemma 10.90.3. Let $R$ be a Noetherian ring and $A$ a set. Then $M = R^ A$ is a flat and Mittag-Leffler $R$-module.

Proof. Combining Lemma 10.89.5 and Proposition 10.89.6 we see that $M$ is flat over $R$. We show that $M$ satisfies the condition of Lemma 10.90.2. Let $F$ be a free finite $R$-module. If $F'$ is any submodule of $F$ then it is finitely presented since $R$ is Noetherian. So by Proposition 10.88.3 we have a commutative diagram

\[ \xymatrix{ F' \otimes _ R M \ar[r] \ar[d]^{\cong } & F \otimes _ R M \ar[d]^{\cong } \\ (F')^ A \ar[r] & F^ A } \]

by which we can identify the map $F' \otimes _ R M \to F \otimes _ R M$ with $(F')^ A \to F^ A$. Hence if $x \in F \otimes _ R M$ corresponds to $(x_\alpha ) \in F^ A$, then the submodule of $F'$ of $F$ generated by the $x_\alpha $ is the smallest submodule of $F$ such that $x \in F' \otimes _ R M$. $\square$

Lemma 10.90.4. Let $R$ be a Noetherian ring and $n$ a positive integer. Then the $R$-module $M = R[[t_1, \ldots , t_ n]]$ is flat and Mittag-Leffler.

Proof. As an $R$-module, we have $M = R^ A$ for a (countable) set $A$. Hence this lemma is a special case of Lemma 10.90.3. $\square$

Example 10.90.5. Non Mittag-Leffler modules.

  1. By Example 10.88.1 and Proposition 10.88.5, $\mathbf{Q}$ is not a Mittag-Leffler $\mathbf{Z}$-module.

  2. We prove below (Theorem 10.92.3) that for a flat and countably generated module, projectivity is equivalent to being Mittag-Leffler. Thus any flat, countably generated, non-projective module $M$ is an example of a non-Mittag-Leffler module. For such an example, see Remark 10.77.3.

  3. Let $k$ be a field. Let $R = k[[x]]$. The $R$-module $M = \prod _{n \in \mathbf{N}} R/(x^ n)$ is not Mittag-Leffler. Namely, consider the element $\xi = (\xi _1, \xi _2, \xi _3, \ldots )$ defined by $\xi _{2^ m} = x^{2^{m - 1}}$ and $\xi _ n = 0$ else, so

    \[ \xi = (0, x, 0, x^2, 0, 0, 0, x^4, 0, 0, 0, 0, 0, 0, 0, x^8, \ldots ) \]

    Then the annihilator of $\xi $ in $M/x^{2^ m}M$ is generated $x^{2^{m - 1}}$ for $m \gg 0$. But if $M$ was Mittag-Leffler, then there would exist a finite $R$-module $Q$ and an element $\xi ' \in Q$ such that the annihilator of $\xi '$ in $Q/x^ l Q$ agrees with the annihilator of $\xi $ in $M/x^ l M$ for all $l \geq 1$, see Proposition 10.87.6 (1). Now you can prove there exists an integer $a \geq 0$ such that the annihilator of $\xi '$ in $Q/x^ l Q$ is generated by either $x^ a$ or $x^{l - a}$ for all $l \gg 0$ (depending on whether $\xi ' \in Q$ is torsion or not). The combination of the above would give for all $l = 2^ m >> 0$ the equality $a = l/2$ or $l - a = l/2$ which is nonsensical.

  4. The same argument shows that $(x)$-adic completion of $\bigoplus _{n \in \mathbf{N}} R/(x^ n)$ is not Mittag-Leffler over $R = k[[x]]$ (hint: $\xi $ is actually an element of this completion).

  5. Let $R = k[a, b]/(a^2, ab, b^2)$. Let $S$ be the finitely presented $R$-algebra with presentation $S = R[t]/(at - b)$. Then as an $R$-module $S$ is countably generated and indecomposable (details omitted). On the other hand, $R$ is Artinian local, hence complete local, hence a henselian local ring, see Lemma 10.148.9. If $S$ was Mittag-Leffler as an $R$-module, then it would be a direct sum of finite $R$-modules by Lemma 10.148.13. Thus we conclude that $S$ is not Mittag-Leffler as an $R$-module.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 059Q. Beware of the difference between the letter 'O' and the digit '0'.