The Stacks project

Remark 38.9.4. Lemma 38.9.3 is a key step in the development of results in this chapter. The analogue of this lemma in [GruRay] is [I Proposition 3.3.1, GruRay]: If $R \to S$ is smooth with geometrically integral fibres, then $S$ is projective as an $R$-module. This is a special case of Lemma 38.9.3, but as we will later improve on this lemma anyway, we do not gain much from having a stronger result at this point. We briefly sketch the proof of this as it is given in [GruRay].

  1. First reduce to the case where $R$ is Noetherian as above.

  2. Since projectivity descends through faithfully flat ring maps, see Algebra, Theorem 10.95.6 we may work locally in the fppf topology on $R$, hence we may assume that $R \to S$ has a section $\sigma : S \to R$. (Just by the usual trick of base changing to $S$.) Set $I = \mathop{\mathrm{Ker}}(S \to R)$.

  3. Localizing a bit more on $R$ we may assume that $I/I^2$ is a free $R$-module and that the completion $S^\wedge $ of $S$ with respect to $I$ is isomorphic to $R[[t_1, \ldots , t_ n]]$, see Morphisms, Lemma 29.34.20. Here we are using that $R \to S$ is smooth.

  4. To prove that $S$ is projective as an $R$-module, it suffices to prove that $S$ is flat, countably generated and Mittag-Leffler as an $R$-module, see Algebra, Lemma 10.93.1. The first two properties are evident. Thus it suffices to prove that $S$ is Mittag-Leffler as an $R$-module. By Algebra, Lemma 10.91.4 the module $R[[t_1, \ldots , t_ n]]$ is Mittag-Leffler over $R$. Hence Algebra, Lemma 10.89.7 shows that it suffices to show that the $S \to S^\wedge $ is universally injective as a map of $R$-modules.

  5. Apply Lemma 38.7.4 to see that $S \to S^\wedge $ is $R$-universally injective. Namely, as $R \to S$ has geometrically integral fibres, any associated point of any fibre ring is just the generic point of the fibre ring which is in the image of $\mathop{\mathrm{Spec}}(S^\wedge ) \to \mathop{\mathrm{Spec}}(S)$.

There is an analogy between the proof as sketched just now, and the development of the arguments leading to the proof of Lemma 38.9.3. In both a completion plays an essential role, and both times the assumption of having geometrically integral fibres assures one that the map from $S$ to the completion of $S$ is $R$-universally injective.

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05FU. Beware of the difference between the letter 'O' and the digit '0'.