Lemma 12.8.2. Let $\mathcal{C}$ be an additive category. Let $S$ be a left or right multiplicative system. Then $S^{-1}\mathcal{C}$ is an additive category and the localization functor $Q : \mathcal{C} \to S^{-1}\mathcal{C}$ is additive.

**Proof.**
By Lemma 12.8.1 we see that $S^{-1}\mathcal{C}$ is preadditive and that $Q$ is additive. Recall that the functor $Q$ commutes with finite colimits (resp. finite limits), see Categories, Lemmas 4.27.9 and 4.27.17. We conclude that $S^{-1}\mathcal{C}$ has a zero object and direct sums, see Lemmas 12.3.2 and 12.3.4.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #8867 by Elías Guisado on

Comment #9219 by Stacks project on

Comment #9222 by Elías Guisado on

Comment #9224 by Stacks project on

There are also: