The Stacks project

Lemma 38.27.2. In Situation 38.20.11. Let $h : X' \to X$ be an étale morphism. Set $\mathcal{F}' = h^*\mathcal{F}$ and $f' = f \circ h$. Let $F_ n'$ be (38.20.11.1) associated to $(f' : X' \to S, \mathcal{F}')$. Then $F_ n$ is a subfunctor of $F_ n'$ and if $h(X') \supset \text{Ass}_{X/S}(\mathcal{F})$, then $F_ n = F'_ n$.

Proof. Let $T \to S$ be any morphism. Then $h_ T : X'_ T \to X_ T$ is étale as a base change of the étale morphism $g$. For $t \in T$ denote $Z \subset X_ t$ the set of points where $\mathcal{F}_ T$ is not flat over $T$, and similarly denote $Z' \subset X'_ t$ the set of points where $\mathcal{F}'_ T$ is not flat over $T$. As $\mathcal{F}'_ T = h_ T^*\mathcal{F}_ T$ we see that $Z' = h_ t^{-1}(Z)$, see Morphisms, Lemma 29.25.13. Hence $Z' \to Z$ is an étale morphism, so $\dim (Z') \leq \dim (Z)$ (for example by Descent, Lemma 35.21.2 or just because an étale morphism is smooth of relative dimension $0$). This implies that $F_ n \subset F_ n'$.

Finally, suppose that $h(X') \supset \text{Ass}_{X/S}(\mathcal{F})$ and that $T \to S$ is a morphism such that $F_ n'(T)$ is nonempty, i.e., such that $\mathcal{F}'_ T$ is flat in dimensions $\geq n$ over $T$. Pick a point $t \in T$ and let $Z \subset X_ t$ and $Z' \subset X'_ t$ be as above. To get a contradiction assume that $\dim (Z) \geq n$. Pick a generic point $\xi \in Z$ corresponding to a component of dimension $\geq n$. Let $x \in \text{Ass}_{X_ t}(\mathcal{F}_ t)$ be a generalization of $\xi $. Then $x$ maps to a point of $\text{Ass}_{X/S}(\mathcal{F})$ by Divisors, Lemma 31.7.3 and Remark 31.7.4. Thus we see that $x$ is in the image of $h_ T$, say $x = h_ T(x')$ for some $x' \in X'_ T$. But $x' \not\in Z'$ as $x \leadsto \xi $ and $\dim (Z') < n$. Hence $\mathcal{F}'_ T$ is flat over $T$ at $x'$ which implies that $\mathcal{F}_ T$ is flat at $x$ over $T$ (by Morphisms, Lemma 29.25.13). Since this holds for every such $x$ we conclude that $\mathcal{F}_ T$ is flat over $T$ at $\xi $ by Theorem 38.26.1 which is the desired contradiction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 05UD. Beware of the difference between the letter 'O' and the digit '0'.