Lemma 101.10.3. Let $f : \mathcal{X} \to \mathcal{Y}$ and $g : \mathcal{Y} \to \mathcal{Z}$ be quasi-compact and quasi-separated morphisms of algebraic stacks. Let $\mathcal{F}$ be a quasi-coherent sheaf on $\mathcal{X}$. Then there exists a spectral sequence with $E_2$-page

$E_2^{p, q} = R^ pg_{\mathit{QCoh}, *}(R^ qf_{\mathit{QCoh}, *}\mathcal{F})$

converging to $R^{p + q}(g \circ f)_{\mathit{QCoh}, *}\mathcal{F}$.

Proof. By Cohomology on Sites, Lemma 21.14.7 the Leray spectral sequence with

$E_2^{p, q} = R^ pg_*(R^ qf_*\mathcal{F})$

converges to $R^{p + q}(g \circ f)_*\mathcal{F}$. By the results of Proposition 101.7.4 all the terms of this spectral sequence are objects of $\mathcal{M}_\mathcal {Z}$. Applying the exact functor $Q_\mathcal {Z} : \mathcal{M}_\mathcal {Z} \to \mathit{QCoh}(\mathcal{O}_\mathcal {Z})$ we obtain a spectral sequence in $\mathit{QCoh}(\mathcal{O}_\mathcal {Z})$ covering to $R^{p + q}(g \circ f)_{\mathit{QCoh}, *}\mathcal{F}$. Hence the result follows if we can show that

$Q_\mathcal {Z}(R^ pg_*(R^ qf_*\mathcal{F})) = Q_\mathcal {Z}(R^ pg_*(Q_\mathcal {X}(R^ qf_*\mathcal{F}))$

This follows from the fact that the kernel and cokernel of the map

$Q_\mathcal {X}(R^ qf_*\mathcal{F}) \longrightarrow R^ qf_*\mathcal{F}$

are parasitic (Lemma 101.9.2) and that $R^ pg_*$ transforms parasitic modules into parasitic modules (Lemma 101.8.3). $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).