The Stacks project

Lemma 37.45.3. Let $f : X \to S$ be flat, locally of finite presentation, separated, locally quasi-finite with universally bounded fibres. Then there exist closed subsets

\[ \emptyset = Z_{-1} \subset Z_0 \subset Z_1 \subset Z_2 \subset \ldots \subset Z_ n = S \]

such that with $S_ r = Z_ r \setminus Z_{r - 1}$ the stratification $S = \coprod _{r = 0, \ldots , n} S_ r$ is characterized by the following universal property: Given $g : T \to S$ the projection $X \times _ S T \to T$ is finite locally free of degree $r$ if and only if $g(T) \subset S_ r$ (set theoretically).

Proof. Let $n$ be an integer bounding the degree of the fibres of $X \to S$. By Morphisms, Lemma 29.57.5 we see that any base change has degrees of fibres bounded by $n$ also. In particular, all the integers $r$ that occur in the statement of the lemma will be $\leq n$. We will prove the lemma by induction on $n$. The base case is $n = 0$ which is obvious.

We claim the set of points $s \in S$ with $\deg _{\kappa (s)}(X_ s) = n$ is an open subset $S_ n \subset S$ and that $X \times _ S S_ n \to S_ n$ is finite locally free of degree $n$. Namely, suppose that $s \in S$ is such a point. Choose an elementary ├ętale morphism $(U, u) \to (S, s)$ and a decomposition $U \times _ S X = W \amalg V$ as in Lemma 37.41.6. Since $V \to U$ is finite, flat, and locally of finite presentation, we see that $V \to U$ is finite locally free, see Morphisms, Lemma 29.48.2. After shrinking $U$ to a smaller neighbourhood of $u$ we may assume $V \to U$ is finite locally free of some degree $d$, see Morphisms, Lemma 29.48.5. As $u \mapsto s$ and $W_ u = \emptyset $ we see that $d = n$. Since $n$ is the maximum degree of a fibre we see that $W = \emptyset $! Thus $U \times _ S X \to U$ is finite locally free of degree $n$. By Descent, Lemma 35.23.30 we conclude that $X \to S$ is finite locally free of degree $n$ over $\mathop{\mathrm{Im}}(U \to S)$ which is an open neighbourhood of $s$ (Morphisms, Lemma 29.36.13). This proves the claim.

Let $S' = S \setminus S_ n$ endowed with the reduced induced scheme structure and set $X' = X \times _ S S'$. Note that the degrees of fibres of $X' \to S'$ are universally bounded by $n - 1$. By induction we find a stratification $S' = S_0 \amalg \ldots \amalg S_{n - 1}$ adapted to the morphism $X' \to S'$. We claim that $S = \coprod _{r = 0, \ldots , n} S_ r$ works for the morphism $X \to S$. Let $g : T \to S$ be a morphism of schemes and assume that $X \times _ S T \to T$ is finite locally free of degree $r$. As remarked above this implies that $r \leq n$. If $r = n$, then it is clear that $T \to S$ factors through $S_ n$. If $r < n$, then $g(T) \subset S' = S \setminus S_ d$ (set theoretically) hence $T_{red} \to S$ factors through $S'$, see Schemes, Lemma 26.12.7. Note that $X \times _ S T_{red} \to T_{red}$ is also finite locally free of degree $r$ as a base change. By the universal property of the stratification $S' = \coprod _{r = 0, \ldots , n - 1} S_ r$ we see that $g(T) = g(T_{red})$ is contained in $S_ r$. Conversely, suppose that we have $g : T \to S$ such that $g(T) \subset S_ r$ (set theoretically). If $r = n$, then $g$ factors through $S_ n$ and it is clear that $X \times _ S T \to T$ is finite locally free of degree $n$ as a base change. If $r < n$, then $X \times _ S T \to T$ is a morphism which is separated, flat, and locally of finite presentation, such that the restriction to $T_{red}$ is finite locally free of degree $r$. Since $T_{red} \to T$ is a universal homeomorphism, we conclude that $X \times _ S T_{red} \to X \times _ S T$ is a universal homeomorphism too and hence $X \times _ S T \to T$ is universally closed (as this is true for the finite morphism $X \times _ S T_{red} \to T_{red}$). It follows that $X \times _ S T \to T$ is finite, for example by Lemma 37.44.1. Then we can use Morphisms, Lemma 29.48.2 to see that $X \times _ S T \to T$ is finite locally free. Finally, the degree is $r$ as all the fibres have degree $r$. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 07RY. Beware of the difference between the letter 'O' and the digit '0'.