## 68.17 Finite morphisms and affines

This section is the analogue of Cohomology of Schemes, Section 30.13.

Lemma 68.17.1. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Assume $f$ is finite, surjective and $X$ locally Noetherian. Let $i : Z \to X$ be a closed immersion. Denote $i' : Z' \to Y$ the inverse image of $Z$ (Morphisms of Spaces, Section 66.13) and $f' : Z' \to Z$ the induced morphism. Then $\mathcal{G} = f'_*\mathcal{O}_{Z'}$ is a coherent $\mathcal{O}_ Z$-module whose support is $Z$.

Proof. Observe that $f'$ is the base change of $f$ and hence is finite and surjective by Morphisms of Spaces, Lemmas 66.5.5 and 66.45.5. Note that $Y$, $Z$, and $Z'$ are locally Noetherian by Morphisms of Spaces, Lemma 66.23.5 (and the fact that closed immersions and finite morphisms are of finite type). By Lemma 68.12.9 we see that $\mathcal{G}$ is a coherent $\mathcal{O}_ Z$-module. The support of $\mathcal{G}$ is closed in $|Z|$, see Morphisms of Spaces, Lemma 66.15.2. Hence if the support of $\mathcal{G}$ is not equal to $|Z|$, then after replacing $X$ by an open subspace we may assume $\mathcal{G} = 0$ but $Z \not= \emptyset$. This would mean that $f'_*\mathcal{O}_{Z'} = 0$. In particular the section $1 \in \Gamma (Z', \mathcal{O}_{Z'}) = \Gamma (Z, f'_*\mathcal{O}_{Z'})$ would be zero which would imply $Z' = \emptyset$ is the empty algebraic space. This is impossible as $Z' \to Z$ is surjective. $\square$

Lemma 68.17.2. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Let $\mathcal{F}$ be a quasi-coherent sheaf on $Y$. Let $\mathcal{I}$ be a quasi-coherent sheaf of ideals on $X$. If $f$ is affine then $\mathcal{I}f_*\mathcal{F} = f_*(f^{-1}\mathcal{I}\mathcal{F})$ (with notation as explained in the proof).

Proof. The notation means the following. Since $f^{-1}$ is an exact functor we see that $f^{-1}\mathcal{I}$ is a sheaf of ideals of $f^{-1}\mathcal{O}_ X$. Via the map $f^\sharp : f^{-1}\mathcal{O}_ X \to \mathcal{O}_ Y$ on $Y_{\acute{e}tale}$ this acts on $\mathcal{F}$. Then $f^{-1}\mathcal{I}\mathcal{F}$ is the subsheaf generated by sums of local sections of the form $as$ where $a$ is a local section of $f^{-1}\mathcal{I}$ and $s$ is a local section of $\mathcal{F}$. It is a quasi-coherent $\mathcal{O}_ Y$-submodule of $\mathcal{F}$ because it is also the image of a natural map $f^*\mathcal{I} \otimes _{\mathcal{O}_ Y} \mathcal{F} \to \mathcal{F}$.

Having said this the proof is straightforward. Namely, the question is étale local on $X$ and hence we may assume $X$ is an affine scheme. In this case the result is a consequence of the corresponding result for schemes, see Cohomology of Schemes, Lemma 30.13.2. $\square$

Lemma 68.17.3. Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces over $S$. Assume

1. $f$ finite,

2. $f$ surjective,

3. $Y$ affine, and

4. $X$ Noetherian.

Then $X$ is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent $\mathcal{O}_ X$-module $\mathcal{F}$ we have $H^1(X, \mathcal{F}) = 0$. This implies that $H^1(X, \mathcal{F}) = 0$ for every quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ by Lemmas 68.15.1 and 68.5.1. Then it follows that $X$ is affine from Proposition 68.16.7.

Let $\mathcal{P}$ be the property of coherent sheaves $\mathcal{F}$ on $X$ defined by the rule

$\mathcal{P}(\mathcal{F}) \Leftrightarrow H^1(X, \mathcal{F}) = 0.$

We are going to apply Lemma 68.14.5. Thus we have to verify (1), (2) and (3) of that lemma for $\mathcal{P}$. Property (1) follows from the long exact cohomology sequence associated to a short exact sequence of sheaves. Property (2) follows since $H^1(X, -)$ is an additive functor. To see (3) let $i : Z \to X$ be a reduced closed subspace with $|Z|$ irreducible. Let $i' : Z' \to Y$ and $f' : Z' \to Z$ be as in Lemma 68.17.1 and set $\mathcal{G} = f'_*\mathcal{O}_{Z'}$. We claim that $\mathcal{G}$ satisfies properties (3)(a) and (3)(b) of Lemma 68.14.5 which will finish the proof. Property (3)(a) we have seen in Lemma 68.17.1. To see (3)(b) let $\mathcal{I}$ be a nonzero quasi-coherent sheaf of ideals on $Z$. Denote $\mathcal{I}' \subset \mathcal{O}_{Z'}$ the quasi-coherent ideal $(f')^{-1}\mathcal{I} \mathcal{O}_{Z'}$, i.e., the image of $(f')^*\mathcal{I} \to \mathcal{O}_{Z'}$. By Lemma 68.17.2 we have $f_*\mathcal{I}' = \mathcal{I} \mathcal{G}$. We claim the common value $\mathcal{G}' = \mathcal{I} \mathcal{G} = f'_*\mathcal{I}'$ satisfies the condition expressed in (3)(b). First, it is clear that the support of $\mathcal{G}/\mathcal{G}'$ is contained in the support of $\mathcal{O}_ Z/\mathcal{I}$ which is a proper subspace of $|Z|$ as $\mathcal{I}$ is a nonzero ideal sheaf on the reduced and irreducible algebraic space $Z$. The morphism $f'$ is affine, hence $R^1f'_*\mathcal{I}' = 0$ by Lemma 68.8.2. As $Z'$ is affine (as a closed subscheme of an affine scheme) we have $H^1(Z', \mathcal{I}') = 0$. Hence the Leray spectral sequence (in the form Cohomology on Sites, Lemma 21.14.6) implies that $H^1(Z, f'_*\mathcal{I}') = 0$. Since $i : Z \to X$ is affine we conclude that $R^1i_*f'_*\mathcal{I}' = 0$ hence $H^1(X, i_*f'_*\mathcal{I}') = 0$ by Leray again. In other words, we have $H^1(X, i_*\mathcal{G}') = 0$ as desired. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).