The Stacks project

Lemma 31.31.1. Let $S$ be a scheme. Let $\mathcal{A}$ be a quasi-coherent graded $\mathcal{O}_ S$-algebra. Let $p : X = \underline{\text{Proj}}_ S(\mathcal{A}) \to S$ be the relative Proj of $\mathcal{A}$. Let $i : Z \to X$ be a closed subscheme. Denote $\mathcal{I} \subset \mathcal{A}$ the kernel of the canonical map

\[ \mathcal{A} \longrightarrow \bigoplus \nolimits _{d \geq 0} p_*\left((i_*\mathcal{O}_ Z)(d)\right). \]

If $p$ is quasi-compact, then there is an isomorphism $Z = \underline{\text{Proj}}_ S(\mathcal{A}/\mathcal{I})$.

Proof. The morphism $p$ is separated by Constructions, Lemma 27.16.9. As $p$ is quasi-compact, $p_*$ transforms quasi-coherent modules into quasi-coherent modules, see Schemes, Lemma 26.24.1. Hence $\mathcal{I}$ is a quasi-coherent $\mathcal{O}_ S$-module. In particular, $\mathcal{B} = \mathcal{A}/\mathcal{I}$ is a quasi-coherent graded $\mathcal{O}_ S$-algebra. The functoriality morphism $Z' = \underline{\text{Proj}}_ S(\mathcal{B}) \to \underline{\text{Proj}}_ S(\mathcal{A})$ is everywhere defined and a closed immersion, see Constructions, Lemma 27.18.3. Hence it suffices to prove $Z = Z'$ as closed subschemes of $X$.

Having said this, the question is local on the base and we may assume that $S = \mathop{\mathrm{Spec}}(R)$ and that $X = \text{Proj}(A)$ for some graded $R$-algebra $A$. Assume $\mathcal{I} = \widetilde{I}$ for $I \subset A$ a graded ideal. By Constructions, Lemma 27.8.9 there exist $f_0, \ldots , f_ n \in A_{+}$ such that $A_{+} \subset \sqrt{(f_0, \ldots , f_ n)}$ in other words $X = \bigcup D_{+}(f_ i)$. Therefore, it suffices to check that $Z \cap D_{+}(f_ i) = Z' \cap D_{+}(f_ i)$ for each $i$. By renumbering we may assume $i = 0$. Say $Z \cap D_{+}(f_0)$, resp. $Z' \cap D_{+}(f_0)$ is cut out by the ideal $J$, resp. $J'$ of $A_{(f_0)}$.

The inclusion $J' \subset J$. Let $d$ be the least common multiple of $\deg (f_0), \ldots , \deg (f_ n)$. Note that each of the twists $\mathcal{O}_ X(nd)$ is invertible, trivialized by $f_ i^{nd/\deg (f_ i)}$ over $D_{+}(f_ i)$, and that for any quasi-coherent module $\mathcal{F}$ on $X$ the multiplication maps $\mathcal{O}_ X(nd) \otimes _{\mathcal{O}_ X} \mathcal{F}(m) \to \mathcal{F}(nd + m)$ are isomorphisms, see Constructions, Lemma 27.10.2. Observe that $J'$ is the ideal generated by the elements $g/f_0^ e$ where $g \in I$ is homogeneous of degree $e\deg (f_0)$ (see proof of Constructions, Lemma 27.11.3). Of course, by replacing $g$ by $f_0^ lg$ for suitable $l$ we may always assume that $d | e$. Then, since $g$ vanishes as a section of $\mathcal{O}_ X(e\deg (f_0))$ restricted to $Z$ we see that $g/f_0^ d$ is an element of $J$. Thus $J' \subset J$.

Conversely, suppose that $g/f_0^ e \in J$. Again we may assume $d | e$. Pick $i \in \{ 1, \ldots , n\} $. Then $Z \cap D_{+}(f_ i)$ is cut out by some ideal $J_ i \subset A_{(f_ i)}$. Moreover,

\[ J \cdot A_{(f_0f_ i)} = J_ i \cdot A_{(f_0f_ i)}. \]

The right hand side is the localization of $J_ i$ with respect to $f_0^{\deg (f_ i)}/f_ i^{\deg (f_0)}$. It follows that

\[ f_0^{e_ i}g/f_ i^{(e_ i + e)\deg (f_0)/\deg (f_ i)} \in J_ i \]

for some $e_ i \gg 0$ sufficiently divisible. This proves that $f_0^{\max (e_ i)}g$ is an element of $I$, because its restriction to each affine open $D_{+}(f_ i)$ vanishes on the closed subscheme $Z \cap D_{+}(f_ i)$. Hence $g/f_0^ e \in J'$ and we conclude $J \subset J'$ as desired. $\square$


Comments (1)

Comment #9574 by Chris on

Perhaps I am a bit confused, in the local setting how does this show that the closed subscheme is ?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0801. Beware of the difference between the letter 'O' and the digit '0'.