The Stacks project

Lemma 36.9.2. In Situation 36.9.1. Let $M$ be an $A$-module and denote $\mathcal{F}$ the associated $\mathcal{O}_ X$-module. Then there is a canonical isomorphism of complexes

\[ \Psi : \mathop{\mathrm{colim}}\nolimits _ e \mathop{\mathrm{Hom}}\nolimits _ A(I^\bullet (f_1^ e, \ldots , f_ r^ e), M) \longrightarrow \check{\mathcal{C}}_{alt}^\bullet (\mathcal{U}, \mathcal{F}) \]

functorial in $M$ where the differentials on the $\mathop{\mathrm{Hom}}\nolimits $-complex are the contragredients of the differentials on $I^\bullet (f_1^ e, \ldots , f_ r^ e)$.

Proof. Recall that the alternating Čech complex is the subcomplex of the usual Čech complex given by alternating cochains, see Cohomology, Section 20.23. As usual we view a $p$-cochain in $\check{\mathcal{C}}_{alt}^\bullet (\mathcal{U}, \mathcal{F})$ as an alternating function $s$ on $\{ 1, \ldots , r\} ^{p + 1}$ whose value $s_{i_0\ldots i_ p}$ at $(i_0, \ldots , i_ p)$ lies in $M_{f_{i_0}\ldots f_{i_ p}} = \mathcal{F}(U_{i_0\ldots i_ p})$. On the other hand, a $p$-cochain $t$ in $\mathop{\mathrm{Hom}}\nolimits ^\bullet (I^\bullet (f_1^ e, \ldots , f_ r^ e), M)$ is a map $t : \wedge ^{p + 1}(A^{\oplus r}) \to M$. Write $[i] \in A^{\oplus r}$ for the $i$th basis element and write

\[ [i_0, \ldots , i_ p] = [i_0] \wedge \ldots \wedge [i_ p] \in \wedge ^{p + 1}(A^{\oplus r}) \]

For $t$ as above we set

\[ \Psi (t)_{i_0 \ldots i_ p} = (-1)^ p \frac{t([i_0, \ldots , i_ p])}{f_{i_0}^ e\ldots f_{i_ p}^ e} \]

It is clear that $\Psi (t)$ is an alternating cochain. The rule above is compatible with the transition maps of the system as the transition map

\[ I^\bullet (f_1^ e, \ldots , f_ r^ e) \leftarrow I^\bullet (f_1^{e + 1}, \ldots , f_ r^{e + 1}), \]

of (36.9.0.1) sends $[i_0, \ldots , i_ p]$ to $f_{i_0}\ldots f_{i_ p}[i_0, \ldots , i_ p]$. It is clear from the description of the localizations $M_{f_{i_0} \ldots f_{i_ p}}$ in Algebra, Lemma 10.9.9 that the rule $\Psi $ defines an isomorphism of cochain modules in degree $p$ in the colimit. To finish the proof we have to show that the map is compatible with differentials. To see this, for $t$ as above we compute

\begin{align*} d(\Psi (t))_{i_0 \ldots i_{p + 1}} & = \sum \nolimits _{j = 0}^{p + 1} (-1)^ j \Psi (t)_{i_0\ldots \hat i_ j \ldots i_{p + 1}} \\ & = (-1)^ p \sum \nolimits _{j = 0}^{p + 1} (-1)^ j t([i_0 \ldots \hat i_ j \ldots i_{p + 1}]) (f_{i_0} \ldots \hat f_{i_ j} \ldots f_{i_ p})^{-e} \end{align*}

Recall that the differentials on $I^\bullet (f_1^ e, \ldots , f_ r^ e)$ are the negative of the differentials on $K^\bullet (f_1, \ldots , f_ r)$. Thus

\begin{align*} \Psi (d(t))_{i_0 \ldots i_{p + 1}} & = (-1)^{p + 1} d(t)([i_0, \ldots , i_{p + 1}]) (f_{i_0} \ldots f_{i_{p + 1}})^{-e} \\ & = (-1)^{p + 1} t(d([i_0, \ldots , i_{p + 1}])) (f_{i_0} \ldots f_{i_{p + 1}})^{-e} \\ & = (-1)^{p + 1} t(-\sum \nolimits _{j = 0}^{p + 1} (-1)^ j f_{i_ j}^ e [i_0, \ldots , \hat i_ j, \ldots i_{p + 1}]) (f_{i_0} \ldots f_{i_{p + 1}})^{-e} \\ & = -(-1)^{p + 1} \sum \nolimits _{j = 0}^{p + 1} (-1)^ j t([i_0, \ldots , \hat i_ j, \ldots i_{p + 1}]) (f_{i_0} \ldots \hat f_{i_ j} \ldots f_{i_ p})^{-e} \end{align*}

The two formulas agree concluding the proof. $\square$


Comments (1)

Comment #8621 by nkym on

I am not sure if the last equality in the proof reflects the fact that the diffential of is the negative of that of . I am sorry if I am wrong.

There are also:

  • 3 comment(s) on Section 36.9: Koszul complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08D0. Beware of the difference between the letter 'O' and the digit '0'.