The Stacks project

Lemma 36.9.2. In Situation 36.9.1. Let $M$ be an $A$-module and denote $\mathcal{F}$ the associated $\mathcal{O}_ X$-module. Then there is a canonical isomorphism of complexes

\[ \mathop{\mathrm{colim}}\nolimits _ e \mathop{\mathrm{Hom}}\nolimits _ A(I^\bullet (f_1^ e, \ldots , f_ r^ e), M) \longrightarrow \check{\mathcal{C}}_{alt}^\bullet (\mathcal{U}, \mathcal{F}) \]

functorial in $M$.

Proof. Recall that the alternating Čech complex is the subcomplex of the usual Čech complex given by alternating cochains, see Cohomology, Section 20.23. As usual we view a $p$-cochain in $\check{\mathcal{C}}_{alt}^\bullet (\mathcal{U}, \mathcal{F})$ as an alternating function $s$ on $\{ 1, \ldots , r\} ^{p + 1}$ whose value $s_{i_0\ldots i_ p}$ at $(i_0, \ldots , i_ p)$ lies in $M_{f_{i_0}\ldots f_{i_ p}} = \mathcal{F}(U_{i_0\ldots i_ p})$. On the other hand, a $p$-cochain $t$ in $\mathop{\mathrm{Hom}}\nolimits _ A(I^\bullet (f_1^ e, \ldots , f_ r^ e), M)$ is given by a map $t : \wedge ^{p + 1}(A^{\oplus r}) \to M$. Write $[i] \in A^{\oplus r}$ for the $i$th basis element and write

\[ [i_0, \ldots , i_ p] = [i_0] \wedge \ldots \wedge [i_ p] \in \wedge ^{p + 1}(A^{\oplus r}) \]

Then we send $t$ as above to $s$ with

\[ s_{i_0\ldots i_ p} = \frac{t([i_0, \ldots , i_ p])}{f_{i_0}^ e\ldots f_{i_ p}^ e} \]

It is clear that $s$ so defined is an alternating cochain. The construction of this map is compatible with the transition maps of the system as the transition map

\[ I^\bullet (f_1^ e, \ldots , f_ r^ e) \leftarrow I^\bullet (f_1^{e + 1}, \ldots , f_ r^{e + 1}), \]

of the ( sends $[i_0, \ldots , i_ p]$ to $f_{i_0}\ldots f_{i_ p}[i_0, \ldots , i_ p]$. It is clear from the description of the localizations $M_{f_{i_0}\ldots f_{i_ p}}$ in Algebra, Lemma 10.9.9 that these maps define an isomorphism of cochain modules in degree $p$ in the limit. To finish the proof we have to show that the map is compatible with differentials. To see this recall that

\begin{align*} d(s)_{i_0\ldots i_{p + 1}} & = \sum \nolimits _{j = 0}^{p + 1} (-1)^ j s_{i_0\ldots \hat i_ j \ldots i_ p} \\ & = \sum \nolimits _{j = 0}^{p + 1} (-1)^ j \frac{t([i_0, \ldots , \hat i_ j, \ldots i_{p + 1}])}{f_{i_0}^ e\ldots \hat f_{i_ j}^ e \ldots f_{i_{p + 1}}^ e} \end{align*}

On the other hand, we have

\begin{align*} \frac{d(t)([i_0, \ldots , i_{p + 1}])}{f_{i_0}^ e\ldots f_{i_{p + 1}}^ e} & = \frac{t(d[i_0, \ldots , i_{p + 1}])}{f_{i_0}^ e\ldots f_{i_{p + 1}}^ e} \\ & = \frac{\sum _ j (-1)^ j f_{i_ j}^ e t([i_0, \ldots , \hat i_ j, \ldots i_{p + 1}])}{f_{i_0}^ e \ldots f_{i_{p + 1}}^ e} \end{align*}

The two formulas agree by inspection. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08D0. Beware of the difference between the letter 'O' and the digit '0'.