Loading web-font TeX/Math/Italic

The Stacks project

Lemma 36.13.7. Let X be an affine scheme. Let U \subset X be a quasi-compact open. Let E, E' be objects of D_\mathit{QCoh}(\mathcal{O}_ X) with E perfect. For every map \alpha : E|_ U \to E'|_ U there exist maps

E \xleftarrow {\beta } E_1 \xrightarrow {\gamma } E'

of complexes on X with E_1 perfect such that \beta : E_1 \to E restricts to an isomorphism on U and such that \alpha = \gamma |_ U \circ \beta |_ U^{-1}. Moreover we can assume E_1 = E \otimes _{\mathcal{O}_ X}^\mathbf {L} I for some perfect complex I on X.

Proof. Write X = \mathop{\mathrm{Spec}}(A). Write U = D(f_1) \cup \ldots \cup D(f_ r). Choose finite complex of finite projective A-modules M^\bullet representing E (Lemma 36.10.7). Choose a complex of A-modules (M')^\bullet representing E' (Lemma 36.3.5). In this case the complex H^\bullet = \mathop{\mathrm{Hom}}\nolimits _ A(M^\bullet , (M')^\bullet ) is a complex of A-modules whose associated complex of quasi-coherent \mathcal{O}_ X-modules represents R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (E, E'), see Cohomology, Lemma 20.46.9. Then \alpha determines an element s of H^0(U, R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (E, E')), see Cohomology, Lemma 20.42.1. There exists an e and a map

\xi : I^\bullet (f_1^ e, \ldots , f_ r^ e) \to \mathop{\mathrm{Hom}}\nolimits _ A(M^\bullet , (M')^\bullet )

corresponding to s, see Proposition 36.9.5. Letting E_1 be the object corresponding to complex of quasi-coherent \mathcal{O}_ X-modules associated to

\text{Tot}(I^\bullet (f_1^ e, \ldots , f_ r^ e) \otimes _ A M^\bullet )

we obtain E_1 \to E using the canonical map I^\bullet (f_1^ e, \ldots , f_ r^ e) \to A and E_1 \to E' using \xi and Cohomology, Lemma 20.42.1. \square


Comments (1)

Comment #8629 by nkym on

In the statement, "of perfect complexes" should be "of complexes" as is not necessarily perfect.


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.