Proof.
We have seen in Lemma 7.30.1 that \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} is a topos. In fact, we recall the proof. First we apply Lemma 7.29.5 to see that we may assume \mathcal{C} is a site with a subcanonical topology, fibre products, a final object X, and an object U with \mathcal{F} = h_ U. The proof of Lemma 7.30.1 shows that the morphism of topoi j_\mathcal {F} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/\mathcal{F} \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) is equal (modulo certain identifications) to the localization morphism j_ U : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}).
Assume (2). This means that j_ U^{-1}j_{U, *}\mathcal{G} \to \mathcal{G} is an isomorphism for all sheaves \mathcal{G} on \mathcal{C}/U. For any object Z/U of \mathcal{C}/U we have
(j_{U, *}h_{Z/U})(U) = \mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}/U}(U \times _ X U/U, Z/U)
by Lemma 7.27.2. Setting \mathcal{G} = h_{Z/U} in the equality above we obtain
\mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}/U}(U \times _ X U/U, Z/U) = \mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}/U}(U, Z/U)
for all Z/U. By Yoneda's lemma (Categories, Lemma 4.3.5) this implies U \times _ X U = U. By Categories, Lemma 4.13.3 U \to X is a monomorphism, in other words (1) holds.
Assume (1). Then j_ U^{-1} j_{U, *} = \text{id} by Lemma 7.27.4.
\square
Comments (2)
Comment #1552 by Ingo Blechschmidt on
Comment #1571 by Johan on