The Stacks project

Lemma 91.11.1. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules. Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. The set of lifts of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{I}\mathcal{G}')$.

Proof. This is a special case of Lemma 91.10.1 but we also give a direct proof. We have short exact sequences of modules

\[ 0 \to \mathcal{I} \to \mathcal{O}' \to \mathcal{O} \to 0 \quad \text{and}\quad 0 \to \mathcal{I}\mathcal{G}' \to \mathcal{G}' \to \mathcal{G} \to 0 \]

and similarly for $\mathcal{F}'$. Since $\mathcal{I}$ has square zero the $\mathcal{O}'$-module structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from a unique $\mathcal{O}$-module structure. It follows that

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{I}\mathcal{G}') \quad \text{and}\quad \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) = \mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) \]

The lemma now follows from the exact sequence

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{I}\mathcal{G}') \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{G}') \to \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}'}(\mathcal{F}', \mathcal{G}) \]

see Homology, Lemma 12.5.8. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 91.11: Infinitesimal deformations of modules on ringed topoi

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 08MP. Beware of the difference between the letter 'O' and the digit '0'.