Lemma 91.11.1. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules. Set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. The set of lifts of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under $\mathop{\mathrm{Hom}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{I}\mathcal{G}')$.
91.11 Infinitesimal deformations of modules on ringed topoi
Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. We freely use the notation introduced in Section 91.9. Let $\mathcal{F}'$ be an $\mathcal{O}'$-module and set $\mathcal{F} = i^*\mathcal{F}'$. In this situation we have a short exact sequence
of $\mathcal{O}'$-modules. Since $\mathcal{I}^2 = 0$ the $\mathcal{O}'$-module structure on $\mathcal{I}\mathcal{F}'$ comes from a unique $\mathcal{O}$-module structure. Thus the sequence above is an extension as in (91.10.0.1). As a special case, if $\mathcal{F}' = \mathcal{O}'$ we have $i^*\mathcal{O}' = \mathcal{O}$ and $\mathcal{I}\mathcal{O}' = \mathcal{I}$ and we recover the sequence of structure sheaves
Proof. This is a special case of Lemma 91.10.1 but we also give a direct proof. We have short exact sequences of modules
and similarly for $\mathcal{F}'$. Since $\mathcal{I}$ has square zero the $\mathcal{O}'$-module structure on $\mathcal{I}$ and $\mathcal{I}\mathcal{G}'$ comes from a unique $\mathcal{O}$-module structure. It follows that
The lemma now follows from the exact sequence
see Homology, Lemma 12.5.8. $\square$
Lemma 91.11.2. Let $(f, f')$ be a morphism of first order thickenings of ringed topoi as in Situation 91.9.1. Let $\mathcal{F}'$ be an $\mathcal{O}'$-module and set $\mathcal{F} = i^*\mathcal{F}'$. Assume that $\mathcal{F}$ is flat over $\mathcal{O}_\mathcal {B}$ and that $(f, f')$ is a strict morphism of thickenings (Definition 91.9.2). Then the following are equivalent
$\mathcal{F}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$, and
the canonical map $f^*\mathcal{J} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ is an isomorphism.
Moreover, in this case the maps
are isomorphisms.
Proof. The map $f^*\mathcal{J} \to \mathcal{I}$ is surjective as $(f, f')$ is a strict morphism of thickenings. Hence the final statement is a consequence of (2).
Proof of the equivalence of (1) and (2). By definition flatness over $\mathcal{O}_\mathcal {B}$ means flatness over $f^{-1}\mathcal{O}_\mathcal {B}$. Similarly for flatness over $f^{-1}\mathcal{O}_{\mathcal{B}'}$. Note that the strictness of $(f, f')$ and the assumption that $\mathcal{F} = i^*\mathcal{F}'$ imply that
as sheaves on $\mathcal{C}$. Moreover, observe that $f^*\mathcal{J} \otimes _\mathcal {O} \mathcal{F} = f^{-1}\mathcal{J} \otimes _{f^{-1}\mathcal{O}_\mathcal {B}} \mathcal{F}$. Hence the equivalence of (1) and (2) follows from Modules on Sites, Lemma 18.28.15. $\square$
Lemma 91.11.3. Let $(f, f')$ be a morphism of first order thickenings of ringed topoi as in Situation 91.9.1. Let $\mathcal{F}'$ be an $\mathcal{O}'$-module and set $\mathcal{F} = i^*\mathcal{F}'$. Assume that $\mathcal{F}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$ and that $(f, f')$ is a strict morphism of thickenings. Then the following are equivalent
$\mathcal{F}'$ is an $\mathcal{O}'$-module of finite presentation, and
$\mathcal{F}$ is an $\mathcal{O}$-module of finite presentation.
Proof. The implication (1) $\Rightarrow $ (2) follows from Modules on Sites, Lemma 18.23.4. For the converse, assume $\mathcal{F}$ of finite presentation. We may and do assume that $\mathcal{C} = \mathcal{C}'$. By Lemma 91.11.2 we have a short exact sequence
Let $U$ be an object of $\mathcal{C}$ such that $\mathcal{F}|_ U$ has a presentation
After replacing $U$ by the members of a covering we may assume the map $\mathcal{O}_ U^{\oplus n} \to \mathcal{F}|_ U$ lifts to a map $(\mathcal{O}'_ U)^{\oplus n} \to \mathcal{F}'|_ U$. The induced map $\mathcal{I}^{\oplus n} \to \mathcal{I} \otimes \mathcal{F}$ is surjective by right exactness of $\otimes $. Thus after replacing $U$ by the members of a covering we can find a lift $(\mathcal{O}'|_ U)^{\oplus m} \to (\mathcal{O}'|_ U)^{\oplus n}$ of the given map $\mathcal{O}_ U^{\oplus m} \to \mathcal{O}_ U^{\oplus n}$ such that
is a complex. Using right exactness of $\otimes $ once more it is seen that this complex is exact. $\square$
Lemma 91.11.4. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.9.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. Assume that $\mathcal{G}'$ is flat over $\mathcal{O}_{\mathcal{B}'}$ and that $(f, f')$ is a strict morphism of thickenings. The set of lifts of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$ is, if nonempty, a principal homogeneous space under
Lemma 91.11.5. Let $i : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}')$ be a first order thickening of ringed topoi. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. There exists an element whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.
Proof. It is clear from the proof of Lemma 91.11.1 that the vanishing of the boundary of $\varphi $ via the map
is a necessary and sufficient condition for the existence of a lift. We conclude as
the adjointness of $i_* = Ri_*$ and $Li^*$ on the derived category (Cohomology on Sites, Lemma 21.19.1). $\square$
Lemma 91.11.6. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.9.1. Let $\mathcal{F}'$, $\mathcal{G}'$ be $\mathcal{O}'$-modules and set $\mathcal{F} = i^*\mathcal{F}'$ and $\mathcal{G} = i^*\mathcal{G}'$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be an $\mathcal{O}$-linear map. Assume that $\mathcal{F}'$ and $\mathcal{G}'$ are flat over $\mathcal{O}_{\mathcal{B}'}$ and that $(f, f')$ is a strict morphism of thickenings. There exists an element whose vanishing is a necessary and sufficient condition for the existence of a lift of $\varphi $ to an $\mathcal{O}'$-linear map $\varphi ' : \mathcal{F}' \to \mathcal{G}'$.
First proof. This follows from Lemma 91.11.5 as we claim that under the assumptions of the lemma we have
Namely, we have $\mathcal{I}\mathcal{G}' = \mathcal{G} \otimes _\mathcal {O} f^*\mathcal{J}$ by Lemma 91.11.2. On the other hand, observe that
(local computation omitted). Using the short exact sequence
we see that this $\text{Tor}_1$ is computed by the kernel of the map $\mathcal{I} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{I}\mathcal{F}'$ which is zero by the final assertion of Lemma 91.11.2. Thus $\tau _{\geq -1}Li^*\mathcal{F}' = \mathcal{F}$. On the other hand, we have
by the dual of Derived Categories, Lemma 13.16.1. $\square$
Second proof. We can apply Lemma 91.10.2 as follows. Note that $\mathcal{K} = \mathcal{I} \otimes _\mathcal {O} \mathcal{F}$ and $\mathcal{L} = \mathcal{I} \otimes _\mathcal {O} \mathcal{G}$ by Lemma 91.11.2, that $c_{\mathcal{F}'} = 1 \otimes 1$ and $c_{\mathcal{G}'} = 1 \otimes 1$ and taking $\psi = 1 \otimes \varphi $ the diagram of the lemma commutes. Thus $o(\varphi ) = o(\varphi , 1 \otimes \varphi )$ works. $\square$
Lemma 91.11.7. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.9.1. Let $\mathcal{F}$ be an $\mathcal{O}$-module. Assume $(f, f')$ is a strict morphism of thickenings and $\mathcal{F}$ flat over $\mathcal{O}_\mathcal {B}$. If there exists a pair $(\mathcal{F}', \alpha )$ consisting of an $\mathcal{O}'$-module $\mathcal{F}'$ flat over $\mathcal{O}_{\mathcal{B}'}$ and an isomorphism $\alpha : i^*\mathcal{F}' \to \mathcal{F}$, then the set of isomorphism classes of such pairs is principal homogeneous under $\mathop{\mathrm{Ext}}\nolimits ^1_\mathcal {O}( \mathcal{F}, \mathcal{I} \otimes _\mathcal {O} \mathcal{F})$.
Proof. If we assume there exists one such module, then the canonical map
is an isomorphism by Lemma 91.11.2. Apply Lemma 91.10.3 with $\mathcal{K} = \mathcal{I} \otimes _\mathcal {O} \mathcal{F}$ and $c = 1$. By Lemma 91.11.2 the corresponding extensions $\mathcal{F}'$ are all flat over $\mathcal{O}_{\mathcal{B}'}$. $\square$
Lemma 91.11.8. Let $(f, f')$ be a morphism of first order thickenings as in Situation 91.9.1. Let $\mathcal{F}$ be an $\mathcal{O}$-module. Assume $(f, f')$ is a strict morphism of thickenings and $\mathcal{F}$ flat over $\mathcal{O}_\mathcal {B}$. There exists an $\mathcal{O}'$-module $\mathcal{F}'$ flat over $\mathcal{O}_{\mathcal{B}'}$ with $i^*\mathcal{F}' \cong \mathcal{F}$, if and only if
the canonical map $f^*\mathcal{J} \otimes _\mathcal {O} \mathcal{F} \to \mathcal{I} \otimes _\mathcal {O} \mathcal{F}$ is an isomorphism, and
the class $o(\mathcal{F}, \mathcal{I} \otimes _\mathcal {O} \mathcal{F}, 1) \in \mathop{\mathrm{Ext}}\nolimits ^2_\mathcal {O}( \mathcal{F}, \mathcal{I} \otimes _\mathcal {O} \mathcal{F})$ of Lemma 91.10.4 is zero.
Proof. This follows immediately from the characterization of $\mathcal{O}'$-modules flat over $\mathcal{O}_{\mathcal{B}'}$ of Lemma 91.11.2 and Lemma 91.10.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #2955 by Ko Aoki on
Comment #3082 by Johan on